Article

CCCH-type zinc finger family in maize: genome-wide identification, classification and expression profiling under abscisic acid and drought treatments.

Key Laboratory of Crop Biology of Anhui Province, Anhui Agricultural University, Hefei, China.
PLoS ONE (Impact Factor: 3.53). 01/2012; 7(7):e40120. DOI: 10.1371/journal.pone.0040120
Source: PubMed

ABSTRACT CCCH-type zinc finger proteins comprise a large protein family. Increasing evidence suggests that members of this family are RNA-binding proteins with regulatory functions in mRNA processing. Compared with those in animals, functions of CCCH-type zinc finger proteins involved in plant growth and development are poorly understood.
Here, we performed a genome-wide survey of CCCH-type zinc finger genes in maize (Zea mays L.) by describing the gene structure, phylogenetic relationships and chromosomal location of each family member. Promoter sequences and expression profiles of putative stress-responsive members were also investigated. A total of 68 CCCH genes (ZmC3H1-68) were identified in maize and divided into seven groups by phylogenetic analysis. These 68 genes were found to be unevenly distributed on 10 chromosomes with 15 segmental duplication events, suggesting that segmental duplication played a major role in expansion of the maize CCCH family. The Ka/Ks ratios suggested that the duplicated genes of the CCCH family mainly experienced purifying selection with limited functional divergence after duplication events. Twelve maize CCCH genes grouped with other known stress-responsive genes from Arabidopsis were found to contain putative stress-responsive cis-elements in their promoter regions. Seven of these genes chosen for further quantitative real-time PCR analysis showed differential expression patterns among five representative maize tissues and over time in response to abscisic acid and drought treatments.
The results presented in this study provide basic information on maize CCCH proteins and form the foundation for future functional studies of these proteins, especially for those members of which may play important roles in response to abiotic stresses.

0 Bookmarks
 · 
108 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The CCCH-type zinc finger proteins comprise a large gene family of regulatory proteins and are widely distributed in eukaryotic organisms. The CCCH proteins have been implicated in multiple biological processes and environmental responses in plants. Little information is available, however, about CCCH genes in plants, especially in woody plants such as citrus. The release of the whole-genome sequence of citrus allowed us to perform a genome-wide analysis of CCCH genes and to compare the identified proteins with their orthologs in model plants. In this study, 62 CCCH genes and a total of 132 CCCH motifs were identified, and a comprehensive analysis including the chromosomal locations, phylogenetic relationships, functional annotations, gene structures and conserved motifs was performed. Distribution mapping revealed that 54 of the 62 CCCH genes are unevenly dispersed on the nine citrus chromosomes. Based on phylogenetic analysis and gene structural features, we constructed 5 subfamilies of 62 CCCH members and integrative subfamilies from citrus, Arabidopsis, and rice, respectively. Importantly, large numbers of SNPs and InDels in 26 CCCH genes were identified from Poncirus trifoliata and Fortunella japonica using whole-genome deep re-sequencing. Furthermore, citrus CCCH genes showed distinct temporal and spatial expression patterns in different developmental processes and in response to various stress conditions. Our comprehensive analysis of CleC3Hs is a valuable resource that further elucidates the roles of CCCH family members in plant growth and development. In addition, variants and comparative genomics analyses deepen our understanding of the evolution of the CCCH gene family and will contribute to further genetics and genomics studies of citrus and other plant species.
    MGG Molecular & General Genetics 05/2014; · 2.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We isolated differentially expressed and dark-responsive genes during flower development and opening in petals of morning glory. Flower opening usually depends on petal expansion and is regulated by both genetic and environmental factors. Flower opening in morning glory (Ipomoea nil) is controlled by the dark/light regime just prior to opening. Opening was normal after 8- or 12-h dark periods but progressed very slowly after a 4-h dark period or in continuous light. Four genes (InXTH1-InXTH4) encoding xyloglucan endotransglucosylase/hydrolases (XTHs) and three genes (InEXPA1-InEXPA3) encoding alpha-expansins (EXPAs) were isolated. The expression patterns of InXTH2, InXTH3, and InXTH4 in petals were closely correlated with the rate of flower opening controlled by the length of the dark period prior to opening, but those of the EXPA genes were not. The expression pattern of InXTH1 gene was closely correlated with petal elongation. Suppression subtractive hybridization was used to isolate dark-responsive genes accompanying flower opening. The expressions of ten isolated genes were associated with the length of the dark period prior to flower opening. One gene was highly homologous to Arabidopsis PSEUDO-RESPONSE REGULATOR7, which is associated with the circadian clock and phytochrome signaling; another to Arabidopsis REVEILLE1, which affects the output of the circadian clock. Other genes were related to light responses, plant hormone effects and signal transduction. The possible roles of these genes in regulation of flower opening are discussed.
    Plant Cell Reports 03/2014; · 2.94 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Zinc finger genes comprise a large and diverse gene family. Based on their individual finger structures and spacing, zinc finger proteins are further divided into different families according to their specific molecular functions. Genes in the CCCH family encode zinc finger proteins containing a motif with three cysteines and one histidine. They play important roles in plant growth and development, and in response to biotic and abiotic stresses. However, the limited analysis of the genome sequence has meant that there is no detailed information concerning the CCCH zinc finger family in tomato (Solanum lycopersicum). Here, we identified 80 CCCH zinc finger protein genes in the tomato genome. A complete overview of this gene family in tomato was presented, including the chromosome locations, gene duplications, phylogeny, gene structures and protein motifs. Promoter sequences and expression profiles of putative stress-responsive members were also investigated. These results revealed that, with the exception of four genes, the 80 CCCH genes are distributed over all 12 chromosomes with different densities, and include six segmental duplication events. The CCCH family in tomato could be divided into 12 groups based on their different CCCH motifs and into eight subfamilies by phylogenetic analysis. Analysis showed that almost all CCCH genes contain putative stress-responsive cis-elements in their promoter regions. Nine CCCH genes chosen for further quantitative real-time PCR analysis showed differential expression patterns in three representative tomato tissues. In addition, their expression levels indicated that these genes are mostly involved in the response to mannitol, heat, salicylic acid, ethylene or methyl jasmonate treatments. To the best of our knowledge, this is the first report of a genome-wide analysis of the tomato CCCH zinc finger family. Our data provided valuable information on tomato CCCH proteins and form a foundation for future studies of these proteins, especially for those members that may play important roles in stress responses.
    Molecular genetics and genomics : MGG. 05/2014;

Full-text

View
2 Downloads
Available from