Article

CCCH-type zinc finger family in maize: genome-wide identification, classification and expression profiling under abscisic acid and drought treatments.

Key Laboratory of Crop Biology of Anhui Province, Anhui Agricultural University, Hefei, China.
PLoS ONE (Impact Factor: 3.53). 07/2012; 7(7):e40120. DOI: 10.1371/journal.pone.0040120
Source: PubMed

ABSTRACT CCCH-type zinc finger proteins comprise a large protein family. Increasing evidence suggests that members of this family are RNA-binding proteins with regulatory functions in mRNA processing. Compared with those in animals, functions of CCCH-type zinc finger proteins involved in plant growth and development are poorly understood.
Here, we performed a genome-wide survey of CCCH-type zinc finger genes in maize (Zea mays L.) by describing the gene structure, phylogenetic relationships and chromosomal location of each family member. Promoter sequences and expression profiles of putative stress-responsive members were also investigated. A total of 68 CCCH genes (ZmC3H1-68) were identified in maize and divided into seven groups by phylogenetic analysis. These 68 genes were found to be unevenly distributed on 10 chromosomes with 15 segmental duplication events, suggesting that segmental duplication played a major role in expansion of the maize CCCH family. The Ka/Ks ratios suggested that the duplicated genes of the CCCH family mainly experienced purifying selection with limited functional divergence after duplication events. Twelve maize CCCH genes grouped with other known stress-responsive genes from Arabidopsis were found to contain putative stress-responsive cis-elements in their promoter regions. Seven of these genes chosen for further quantitative real-time PCR analysis showed differential expression patterns among five representative maize tissues and over time in response to abscisic acid and drought treatments.
The results presented in this study provide basic information on maize CCCH proteins and form the foundation for future functional studies of these proteins, especially for those members of which may play important roles in response to abiotic stresses.

0 Bookmarks
 · 
142 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In recent years, dozens of Arabidopsis and rice CCCH-type zinc finger genes have been functionally studied, many of which confer important traits, such as abiotic and biotic stress tolerance, delayed leaf senescence and improved plant architecture. Switchgrass (Panicum virgatum) is an important bioenergy crop. Identification of agronomically important genes and/or loci is an important step for switchgrass molecular breeding. Annotating switchgrass CCCH genes using translational genomics methods will help further the goal of understanding switchgrass genetics and creating improved varieties. Taking advantage of the publicly-available switchgrass genomic and transcriptomic databases, we carried out a comprehensive analysis of switchgrass CCCH genes (PvC3Hs). A total of 103 PvC3Hs were identified and divided into 21 clades according to phylogenetic analysis. Genes in the same clade shared similar gene structure and conserved motifs. Chromosomal location analysis showed that most of the duplicated PvC3H gene pairs are in homeologous chromosomes. Evolution analysis of 19 selected PvC3H pairs showed that 42.1% of them were under diversifying selection. Expression atlas of the 103 PvC3Hs in 21 different organs, tissues and developmental stages revealed genes with higher expression levels in lignified cells, vascular cells, or reproductive tissues/organs, suggesting the potential function of these genes in development. We also found that eight PvC3Hs in Clade-XIV were orthologous to ABA- or stress- responsive CCCH genes in Arabidopsis and rice with functions annotated. Promoter and qRT-PCR analyses of Clade-XIV PvC3Hs showed that these eight genes were all responsive to ABA and various stresses. Genome-wide analysis of PvC3Hs confirmed the recent allopolyploidization event of tetraploid switchgrass from two closely-related diploid progenitors. The short time window after the polyploidization event allowed the existence of a large number of PvC3H genes with a high positive selection pressure onto them. The homeologous pairs of PvC3Hs may contribute to the heterosis of switchgrass and its wide adaptation in different ecological niches. Phylogenetic and gene expression analyses provide informative clues for discovering PvC3H genes in some functional categories. Particularly, eight PvC3Hs in Clade-XIV were found involved in stress responses. This information provides a foundation for functional studies of these genes in the future.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Rare-cold-inducible (RCI2) genes are structurally conserved members that encode small, highly hydrophobic proteins involved in response to various abiotic stresses. Phylogenetic and functional analyses of these genes have been conducted in Arabidopsis, but an extensive investigation of the RCI2 gene family has not yet been carried out in maize. In the present study, 10 RCI2 genes were identified in a fully sequenced maize genome. Structural characterization and expression pattern analysis of 10 ZmRCI2s (Zea mays RCI2 genes) were subsequently determined. Sequence and phylogenetic analyses indicated that ZmRCI2s are highly conserved, and most of them could be grouped with their orthologues from other organisms. Chromosomal location analysis indicated that ZmRCI2s were distributed unevenly on seven chromosomes with two segmental duplication events, suggesting that maize RCI2 gene family is an evolutionarily conserved family. Putative stress-responsive cis-elements were detected in the 2-kb promoter regions of the 10 ZmRCI2s. In addition, the 10 ZmRCI2s showed different expression patterns in maize development based on transcriptome analysis. Further, microarray and quantitative real-time PCR (qRT-PCR) analysis showed that each maize RCI2 genes were responsive to drought stress, suggesting their important roles in drought stress response. The results of this work provide a basis for future cloning and application studies of maize RCI2 genes.
    Journal of Genetics 12/2014; 93(3):655-66. DOI:10.1007/s12041-014-0421-9 · 1.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Members of the plant-specific IQ67-domain (IQD) protein family are involved in plant development and the basal defense response. Although systematic characterization of this family has been carried out in Arabidopsis, tomato (Solanum lycopersicum), Brachypodium distachyon and rice (Oryza sativa), systematic analysis and expression profiling of this gene family in soybean (Glycine max) have not previously been reported. In this study, we identified and structurally characterized IQD genes in the soybean genome. A complete set of 67 soybean IQD genes (GmIQD1-67) was identified using Blast search tools, and the genes were clustered into four subfamilies (IQD I-IV) based on phylogeny. These soybean IQD genes are distributed unevenly across all 20 chromosomes, with 30 segmental duplication events, suggesting that segmental duplication has played a major role in the expansion of the soybean IQD gene family. Analysis of the Ka/Ks ratios showed that the duplicated genes of the GmIQD family primarily underwent purifying selection. Microsynteny was detected in most pairs: genes in clade 1-3 might be present in genome regions that were inverted, expanded or contracted after the divergence; most gene pairs in clade 4 showed high conservation with little rearrangement among these gene-residing regions. Of the soybean IQD genes examined, six were most highly expressed in young leaves, six in flowers, one in roots and two in nodules. Our qRT-PCR analysis of 24 soybean IQD III genes confirmed that these genes are regulated by MeJA stress. Our findings present a comprehensive overview of the soybean IQD gene family and provide insights into the evolution of this family. In addition, this work lays a solid foundation for further experiments aimed at determining the biological functions of soybean IQD genes in growth and development.
    PLoS ONE 10/2014; 9(10):e110896. DOI:10.1371/journal.pone.0110896 · 3.53 Impact Factor

Full-text (2 Sources)

Download
8 Downloads
Available from
Nov 21, 2014