Article

Astaxanthin enhances ATP-binding cassette transporter A1/G1 expressions and cholesterol efflux from macrophages.

Institute of Environmental Science for Human Life, Ochanomizu University, 2-1-1, Otsuka, Tokyo, Japan.
Journal of Nutritional Science and Vitaminology (Impact Factor: 0.99). 01/2012; 58(2):96-104. DOI: 10.3177/jnsv.58.96
Source: PubMed

ABSTRACT ATP-binding cassette transporters (ABC) A1 and G1 are key molecules in cholesterol efflux from macrophages, which is an initial step of reverse cholesterol transport (RCT), a major anti-atherogenic property of high-density lipoprotein (HDL). Astaxanthin is one of the naturally occurring carotenoids responsible for the pink-red pigmentation in a variety of living organisms. Although astaxanthin is known to be a strong antioxidant, it remains unclear through what mechanism of action it affects cholesterol homeostasis in macrophages. We therefore investigated the effects of astaxanthin on cholesterol efflux and ABCA1/G1 expressions in macrophages. Astaxanthin enhanced both apolipoprotein (apo) A-I- and HDL-mediated cholesterol efflux from RAW264.7 cells. In supporting these enhanced cholesterol efflux mechanisms, astaxanthin promoted ABCA1/G1 expression in various macrophages. In contrast, peroxisome proliferator-activated receptor γ, liver X receptor (LXR) α and LXRβ levels remained unchanged by astaxanthin. An experiment using actinomycin D demonstrated that astaxanthin transcriptionally induced ABCA1/G1 expression, and oxysterol depletion caused by overexpression of cholesterol sulfotransferase further revealed that these inductions in ABCA1/G1 were independent of LXR-mediated pathways. Finally, we performed luciferase assays using human ABCA1/G1 promoter-reporter constructs to reveal that astaxanthin activated both promoters irrespective of the presence or absence of LXR-responsive elements, indicating LXR-independence of these activations. In conclusion, astaxanthin increased ABCA1/G1 expression, thereby enhancing apoA-I/HDL-mediated cholesterol efflux from the macrophages in an LXR-independent manner. In addition to the anti-oxidative properties, the potential cardioprotective properties of astaxanthin might therefore be associated with an enhanced anti-atherogenic function of HDL.

1 Bookmark
 · 
167 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Elevated serum cholesterol concentrations in mid-life increase risk for Alzheimer's disease (AD) in later life. However, lower concentrations of cholesterol-carrying high density lipoprotein (HDL) and its principal apolipoprotein A1 (ApoA1) correlate with increased risk for AD. As HDL transports oxocarotenoids, which are scavengers of peroxynitrite, we have investigated the hypothesis that lower HDL and oxocarotenoid concentrations during AD may render HDL susceptible to nitration and oxidation and in turn reduce the efficiency of reverse cholesterol transport (RCT) from lipid-laden cells. Fasting blood samples were obtained from subjects with 1) AD without cardiovascular comorbidities and risk factors (AD); 2) AD with cardiovascular comorbidities and risk factors (AD Plus); 3) normal cognitive function; for carotenoid determination by HPLC, analysis of HDL nitration and oxidation by ELISA, and 3H-cholesterol export to isolated HDL. HDL concentration in the plasma from AD Plus patients was significantly lower compared to AD or control subject HDL levels. Similarly, lutein, lycopene, and zeaxanthin concentrations were significantly lower in AD Plus patients compared to those in control subjects or AD patients, and oxocarotenoid concentrations correlated with Mini-Mental State Examination scores. At equivalent concentrations of ApoA1, HDL isolated from all subjects irrespective of diagnosis was equally effective at mediating RCT. HDL concentration is lower in AD Plus patients' plasma and thus capacity for RCT is compromised. In contrast, HDL from patients with AD-only was not different in concentration, modifications, or function from HDL of healthy age-matched donors. The relative importance of elevating HDL alone compared with elevating carotenoids alone or elevating both to reduce risk for dementia should be investigated in patients with early signs of dementia.
    Journal of Alzheimer's disease: JAD 01/2014; · 4.17 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: There is currently much interest in biological active compounds derived from natural resources, especially compounds that can efficiently act on molecular targets, which are involved in various diseases. Astaxanthin (3,3'-dihydroxy-β, β'-carotene-4,4'-dione) is a xanthophyll carotenoid, contained in Haematococcus pluvialis, Chlorella zofingiensis, Chlorococcum, and Phaffia rhodozyma. It accumulates up to 3.8% on the dry weight basis in H. pluvialis. Our recent published data on astaxanthin extraction, analysis, stability studies, and its biological activities results were added to this review paper. Based on our results and current literature, astaxanthin showed potential biological activity in in vitro and in vivo models. These studies emphasize the influence of astaxanthin and its beneficial effects on the metabolism in animals and humans. Bioavailability of astaxanthin in animals was enhanced after feeding Haematococcus biomass as a source of astaxanthin. Astaxanthin, used as a nutritional supplement, antioxidant and anticancer agent, prevents diabetes, cardiovascular diseases, and neurodegenerative disorders, and also stimulates immunization. Astaxanthin products are used for commercial applications in the dosage forms as tablets, capsules, syrups, oils, soft gels, creams, biomass and granulated powders. Astaxanthin patent applications are available in food, feed and nutraceutical applications. The current review provides up-to-date information on astaxanthin sources, extraction, analysis, stability, biological activities, health benefits and special attention paid to its commercial applications.
    Marine Drugs 01/2014; 12(1):128-152. · 3.98 Impact Factor