Article

The peripheral sensory nervous system in the vertebrate head: a gene regulatory perspective.

Department of Craniofacial Development and Stem Cell Biology, King's College London, Guy's Tower Wing, Floor 27, London SE1 9RT, UK.
Developmental Biology (Impact Factor: 3.87). 07/2012; 370(1):3-23. DOI: 10.1016/j.ydbio.2012.06.028
Source: PubMed

ABSTRACT In the vertebrate head, crucial parts of the sense organs and sensory ganglia develop from special regions, the cranial placodes. Despite their cellular and functional diversity, they arise from a common field of multipotent progenitors and acquire distinct identity later under the influence of local signalling. Here we present the gene regulatory network that summarises our current understanding of how sensory cells are specified, how they become different from other ectodermal derivatives and how they begin to diversify to generate placodes with different identities. This analysis reveals how sequential activation of sets of transcription factors subdivides the ectoderm over time into smaller domains of progenitors for the central nervous system, neural crest, epidermis and sensory placodes. Within this hierarchy the timing of signalling and developmental history of each cell population is of critical importance to determine the ultimate outcome. A reoccurring theme is that local signals set up broad gene expression domains, which are further refined by mutual repression between different transcription factors. The Six and Eya network lies at the heart of sensory progenitor specification. In a positive feedback loop these factors perpetuate their own expression thus stabilising pre-placodal fate, while simultaneously repressing neural and neural crest specific factors. Downstream of the Six and Eya cassette, Pax genes in combination with other factors begin to impart regional identity to placode progenitors. While our review highlights the wealth of information available, it also points to the lack information on the cis-regulatory mechanisms that control placode specification and of how the repeated use of signalling input is integrated.

0 Bookmarks
 · 
221 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Vertebrate cranial sensory organs are derived from region at the border of the anterior neural plate called the pre-placodal region (PPR). The otic placode, the anlagen of the inner ear, is induced from PPR ectoderm by FGF signaling. We have previously shown that competence of embryonic ectoderm to respond to FGF signaling during otic placode induction correlates with the expression of PPR genes, but the molecular basis of this competence is poorly understood. Here, we characterize the function of a transcription factor, Foxi3 that is expressed at very early stages in the non-neural ectoderm and later in the PPR of chick embryos. Ablation experiments showed that the underlying hypoblast is necessary for the initiation of Foxi3 expression. Mis-expression of Foxi3 was sufficient to induce markers of non-neural ectoderm such as Dlx5, and the PPR such as Six1 and Eya2. Electroporation of Dlx5, or Six1 together with Eya1 also induced Foxi3, suggesting direct or indirect positive regulation between non-neural ectoderm genes and PPR genes. Knockdown of Foxi3 in chick embryos prevented the induction of otic placode markers, and was able to prevent competent cranial ectoderm from expressing otic markers in response to FGF2. In contrast, Foxi3 expression alone was not sufficient to confer competence to respond to FGF on embryonic ectoderm. Our analysis of PPR and FGF-responsive genes after Foxi3 knockdown at gastrula stages suggests it is not necessary for the expression of PPR genes at these stages, nor for the transduction of FGF signals. The early expression but late requirement for Foxi3 in ear induction suggests it may have some of the properties associated with pioneer transcription factors.
    Developmental Biology 04/2014; · 3.87 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This protocol describes a culture system in which inner-ear sensory tissue is produced from mouse embryonic stem (ES) cells under chemically defined conditions. This model is amenable to basic and translational investigations into inner ear biology and regeneration. In this protocol, mouse ES cells are aggregated in 96-well plates in medium containing extracellular matrix proteins to promote epithelialization. During the first 14 d, a series of precisely timed protein and small-molecule treatments sequentially induce epithelia that represent the mouse embryonic non-neural ectoderm, preplacodal ectoderm and otic vesicle epithelia. Ultimately, these tissues develop into cysts with a pseudostratified epithelium containing inner ear hair cells and supporting cells after 16-20 d. Concurrently, sensory-like neurons generate synapse-like structures with the derived hair cells. We have designated the stem cell-derived epithelia harboring hair cells, supporting cells and sensory-like neurons as inner ear organoids. This method provides a reproducible and scalable means to generate inner ear sensory tissue in vitro.
    Nature Protocol 06/2014; 9(6):1229-1244. · 8.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: a b s t r a c t Cranial neurogenic placodes and the neural crest make essential contributions to key adult character-istics of all vertebrates, including the paired peripheral sense organs and craniofacial skeleton. Neurogenic placode development has been extensively characterized in representative jawed vertebrates (gnathostomes) but not in jawless fishes (agnathans). Here, we use in vivo lineage tracing with DiI, together with neuronal differentiation markers, to establish the first detailed fate-map for placode-derived sensory neurons in a jawless fish, the sea lamprey Petromyzon marinus, and to confirm that neural crest cells in the lamprey contribute to the cranial sensory ganglia. We also show that a pan-Pax3/ 7 antibody labels ophthalmic trigeminal (opV, profundal) placode-derived but not maxillomandibular trigeminal (mmV) placode-derived neurons, mirroring the expression of gnathostome Pax3 and suggesting that Pax3 (and its single Pax3/7 lamprey ortholog) is a pan-vertebrate marker for opV placode-derived neurons. Unexpectedly, however, our data reveal that mmV neuron precursors are located in two separate domains at neurula stages, with opV neuron precursors sandwiched between them. The different branches of the mmV nerve are not comparable between lampreys and gnatho-stomes, and spatial segregation of mmV neuron precursor territories may be a derived feature of lampreys. Nevertheless, maxillary and mandibular neurons are spatially segregated within gnathostome mmV ganglia, suggesting that a more detailed investigation of gnathostome mmV placode development would be worthwhile. Overall, however, our results highlight the conservation of cranial peripheral sensory nervous system development across vertebrates, yielding insight into ancestral vertebrate traits.
    Developmental Biology 01/2014; 385:405-416. · 3.87 Impact Factor

Full-text

View
101 Downloads
Available from
May 15, 2014