The peripheral sensory nervous system in the vertebrate head: a gene regulatory perspective.

Department of Craniofacial Development and Stem Cell Biology, King's College London, Guy's Tower Wing, Floor 27, London SE1 9RT, UK.
Developmental Biology (Impact Factor: 3.87). 07/2012; 370(1):3-23. DOI: 10.1016/j.ydbio.2012.06.028
Source: PubMed

ABSTRACT In the vertebrate head, crucial parts of the sense organs and sensory ganglia develop from special regions, the cranial placodes. Despite their cellular and functional diversity, they arise from a common field of multipotent progenitors and acquire distinct identity later under the influence of local signalling. Here we present the gene regulatory network that summarises our current understanding of how sensory cells are specified, how they become different from other ectodermal derivatives and how they begin to diversify to generate placodes with different identities. This analysis reveals how sequential activation of sets of transcription factors subdivides the ectoderm over time into smaller domains of progenitors for the central nervous system, neural crest, epidermis and sensory placodes. Within this hierarchy the timing of signalling and developmental history of each cell population is of critical importance to determine the ultimate outcome. A reoccurring theme is that local signals set up broad gene expression domains, which are further refined by mutual repression between different transcription factors. The Six and Eya network lies at the heart of sensory progenitor specification. In a positive feedback loop these factors perpetuate their own expression thus stabilising pre-placodal fate, while simultaneously repressing neural and neural crest specific factors. Downstream of the Six and Eya cassette, Pax genes in combination with other factors begin to impart regional identity to placode progenitors. While our review highlights the wealth of information available, it also points to the lack information on the cis-regulatory mechanisms that control placode specification and of how the repeated use of signalling input is integrated.

  • [Show abstract] [Hide abstract]
    ABSTRACT: With the flood of published research encountered today, it is important to occasionally reflect upon how we arrived at our current understanding in a particular scientific discipline, thereby positioning new discoveries into proper context with long-established models. This historical review highlights some of the important scientific contributions in the field of neurogenic placode development. By viewing cumulatively the rich historical data, we can more fully appreciate and apply what has been accomplished. Early descriptive work in fish and experimental approaches in amphibians and chick yielded important conceptual models of placode induction and cellular differentiation. Current efforts to discover genes and their molecular functions continue to expand our understanding of the placodes. Carefully considering the body of work may improve current models and help focus modern experimental design. Developmental Dynamics, 2014. © 2014 Wiley Periodicals, Inc.
    Developmental Dynamics 06/2014; · 2.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cranial placodes contribute to many sensory organs and ganglia of the vertebrate head. The olfactory, otic, and lateral line placodes form the sensory receptor cells and neurons of the nose, ear, and lateral line system; the lens placode develops into the lens of the eye; epibranchial, profundal, and trigeminal placodes contribute sensory neurons to cranial nerve ganglia; and the adenohypophyseal placode gives rise to the anterior pituitary, a major endocrine control organ. Despite these differences in fate, all placodes are now known to originate from a common precursor, the preplacodal ectoderm (PPE). The latter is a horseshoe-shaped domain of ectoderm surrounding the anterior neural plate and neural crest and is defined by expression of transcription factor Six1, its cofactor Eya1, and other members of the Six and Eya families. Studies in zebrafish, Xenopus, and chick reveal that the PPE is specified together with other ectodermal territories (epidermis, neural crest, and neural plate) during early embryogenesis. During gastrulation, domains of ventrally (e.g., Dlx3/Dlx5, GATA2/GATA3, AP2, Msx1, FoxI1, and Vent1/Vent2) and dorsally (e.g., Zic1, Sox3, and Geminin) restricted transcription factors are established in response to a gradient of BMP and help to define non-neural and neural competence territories, respectively. At neural plate stages, the PPE is then induced in the non-neural competence territory by signals from the adjacent neural plate and mesoderm including FGF, BMP inhibitors, and Wnt inhibitors. Subsequently, signals from more localized signaling centers induce restricted expression domains of various transcription factors within the PPE, which specify multiplacodal areas and ultimately individual placodes.For further resources related to this article, please visit the WIREs website.Conflict of interest: The author has declared no conflicts of interest for this article.
    Wiley Interdisciplinary Reviews: Developmental Biology. 07/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Teleost eggs contain an abundant store of maternal thyroid hormones (THs) and early in zebrafish embryonic development all the genes necessary for TH signalling are expressed. Nonetheless the function of THs in embryonic development remains elusive. To test the hypothesis that THs are fundamental for zebrafish embryonic development an MCT8 knockdown strategy was deployed to prevent maternal TH uptake. Absence of maternal THs did not affect early specification of the neural epithelia but profoundly modified later dorsal specification of the brain and spinal cord as well as specific neuron differentiation. Maternal THs acted upstream of pax2a, pax7 and pax8 genes but downstream of shha and fgf8a signalling. The lack of inhibitory spinal cord interneurons and increased motorneurons in the MCT8 morphants is consistent with their stiff axial body and impaired mobility. MCT8 mutations are associated with X-linked mental retardation in humans and the cellular and molecular consequences of MCT8 knockdown during embryonic development in zebrafish provides new insight into the potential role of THs in this condition.
    Molecular endocrinology (Baltimore, Md.). 05/2014;


Available from
May 15, 2014