Brain connexins in demyelinating diseases: Therapeutic potential of glial targets

Division of Glia Disease and Therapeutics, Center for Translational Neuromedicine, University of Rochester Medical School, Rochester, NY 14640, USA.
Brain research (Impact Factor: 2.83). 07/2012; 1487. DOI: 10.1016/j.brainres.2012.07.003
Source: PubMed

ABSTRACT Several demyelinating syndromes have been linked to mutations in glial gap junction proteins, the connexins. Although mutations in connexins of the myelinating cells, Schwann cells and oligodendrocytes, were initially described, recent data have shown that astrocytes also play a major role in the demyelination process. Alterations in astrocytic proteins directly affect the oligodendrocytes' ability to maintain myelin structure, and associated astrocytic proteins that regulate water and ionic fluxes, including aquaporins, can also regulate myelin integrity. Here, we will review the main evidence from human disorders and transgenic mouse models that implicate glial gap junction proteins in demyelinating diseases and the therapeutic potential of some of these targets. This article is part of a Special Issue entitled Electrical Synapses.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Reduced density of glial cells and low levels of some astrocyte proteins have been described in the orbitofrontal cortex (OFC) in depression and alcoholism, two disorders often comorbid. These regressive changes may also involve the communication between astrocytes via gap junctions and hemichannels, which play important regulatory roles in neurotransmission. We determined levels and morphological immunostaining parameters of connexin 43 (Cx43), the main protein subunit of astrocyte gap junctions/hemichannels, in the OFC of subjects with depression, alcoholism or comorbid depression/alcoholism as compared to non-psychiatric subjects. Postmortem brain samples from 23 subjects with major depressive disorder (MDD), 16 with alcohol dependence, 13 with comorbid MDD and alcohol dependence, and 20 psychiatrically-normal comparison subjects were processed for western blots to determine Cx43 levels. Area fraction of Cx43 immunoreactivity, and density and average size of immunoreactive puncta were measured in histological sections. There was a significant, larger than 60 percent decrease in Cx43 level in the three psychiatric groups as compared to controls. Area fraction of immunoreactivity and immunoreactive punctum size were reduced in all psychiatric groups, but Cx43-immunoreactive puncta density was reduced only in alcohol-dependent subjects. Among psychiatric subjects, no difference in Cx43 levels or immunostaining was found between suicides and non-suicides. The present data suggest that dysfunction of the OFC is accompanied by reduction in the levels of gap junction protein Cx43 in depression and alcoholism, and reduction in density of Cx43 immunoreactive puncta only in alcoholism, pointing to altered gap junction or hemichannel-based communication in the pathophysiology of those disorders.
    Journal of Psychiatric Research 04/2014; DOI:10.1016/j.jpsychires.2014.04.007 · 4.09 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the mammalian brain, the subcortical white matter comprises long-range axonal projections and their associated glial cells. Here, astrocytes and oligodendrocytes serve specific functions during development and throughout adult life, when they meet the metabolic needs of long fiber tracts. Within a short period of time, oligodendrocytes generate large amount of lipids, such as cholesterol, and membrane proteins for building the myelin sheaths. After myelination has been completed, a remaining function of glial metabolism is the energetic support of axonal transport and impulse propagation. Astrocytes can support axonal energy metabolism under low glucose conditions by the degradation of stored glycogen. Recently it has been recognized that the ability of glycolytic oligodendrocytes to deliver pyruvate and lactate is critical for axonal functions in vivo. In this review, we discuss the specific demands of oligodendrocytes during myelination and potential routes of metabolites between glial cells and myelinated axons. As examples, four specific metabolites are highlighted (cholesterol, glycogen, lactate, and N-acetyl-aspartate) that contribute to the specific functions of white matter glia. Regulatory processes are discussed that could be involved in coordinating metabolic adaptations and in providing feedback information about metabolic states. © GLIA 2014
    Glia 11/2014; 62(11). DOI:10.1002/glia.22737 · 5.47 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Neglected for years, astrocytes are now recognized to fulfill and support many, if not all, homeostatic functions of the healthy central nervous system (CNS). During neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and spinal cord injury (SCI), astrocytes in the vicinity of degenerating areas undergo both morphological and functional changes that might compromise their intrinsic properties. Evidence from human and animal studies show that deficient astrocyte functions or loss-of-astrocytes largely contribute to increased susceptibility to cell death for neurons, oligodendrocytes and axons during ALS and SCI disease progression. Despite exciting advances in experimental CNS repair, most of current approaches that are translated into clinical trials focus on the replacement or support of spinal neurons through stem cell transplantation, while none focus on the specific replacement of astroglial populations. Knowing the important functions carried out by astrocytes in the CNS, astrocyte replacement-based therapies might be a promising approach to alleviate overall astrocyte dysfunction, deliver neurotrophic support to degenerating spinal tissue and stimulate endogenous CNS repair abilities. Enclosed in this review, we gathered experimental evidence that argue in favor of astrocyte transplantation during ALS and SCI. Based on their intrinsic properties and according to the cell type transplanted, astrocyte precursors or stem cell-derived astrocytes promote axonal growth, support mechanisms and cells involved in myelination, are able to modulate the host immune response, deliver neurotrophic factors and provide protective molecules against oxidative or excitotoxic insults, amongst many possible benefits. Embryonic or adult stem cells can even be genetically engineered in order to deliver missing gene products and therefore maximize the chance of neuroprotection and functional recovery. However, before broad clinical translation, further preclinical data on safety, reliability and therapeutic efficiency should be collected. Although several technical challenges need to be overcome, we discuss the major hurdles that have already been met or solved by targeting the astrocyte population in experimental ALS and SCI models and we discuss avenues for future directions based on latest molecular findings regarding astrocyte biology.
    03/2015; 7(2):380-398. DOI:10.4252/wjsc.v7.i2.380