Article

Mitochondrial DNA Sequence Variation Associated with Dementia and Cognitive Function in the Elderly

California Pacific Medical Center Research Institute, San Francisco, CA, USA.
Journal of Alzheimer's disease: JAD (Impact Factor: 3.61). 07/2012; 32(2):357-72. DOI: 10.3233/JAD-2012-120466
Source: PubMed

ABSTRACT Mitochondrial dysfunction is a prominent hallmark of Alzheimer's disease (AD). Mitochondrial DNA (mtDNA) damage may be a major cause of abnormal reactive oxidative species production in AD or increased neuronal susceptibility to oxidative injury during aging. The purpose of this study was to assess the influence of mtDNA sequence variation on clinically significant cognitive impairment and dementia risk in the population-based Health, Aging, and Body Composition (Health ABC) Study. We first investigated the role of common mtDNA haplogroups and individual variants on dementia risk and 8-year change on the Modified Mini-Mental State Examination (3MS) and Digit Symbol Substitution Test (DSST) among 1,631 participants of European genetic ancestry. Participants were free of dementia at baseline and incidence was determined in 273 cases from hospital and medication records over 10-12 follow-up years. Participants from haplogroup T had a statistically significant increased risk of developing dementia (OR = 1.86, 95% CI = 1.23, 2.82, p = 0.0008) and haplogroup J participants experienced a statistically significant 8-year decline in 3MS (β = -0.14, 95% CI = -0.27, -0.03, p = 0.0006), both compared with common haplogroup H. The m.15244A>G, p.G166G, CytB variant was associated with a significant decline in DSST score (β = -0.58, 95% CI -0.89, -0.28, p = 0.00019) and the m.14178T>C, p.I166V, ND6 variant was associated with a significant decline in 3MS score (β = -0.87, 95% CI -1.31, -3.86, p = 0.00012). Finally, we sequenced the complete ~16.5 kb mtDNA from 135 Health ABC participants and identified several highly conserved and potentially functional nonsynonymous variants unique to 22 dementia cases and aggregate sequence variation across the hypervariable 2-3 regions that influences 3MS and DSST scores.

0 Bookmarks
 · 
128 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mitochondrial DNA (mtDNA) is highly polymorphic at the population level, and specific mtDNA variants affect mitochondrial function. With emerging evidence that mitochondrial mechanisms are central to common human diseases, it is plausible that mtDNA variants contribute to the "missing heritability" of several complex traits. Given the central role of mtDNA genes in oxidative phosphorylation, the same genetic variants would be expected to alter the risk of developing several different disorders, but this has not been shown to date. Here we studied 38,638 individuals with 11 major diseases, and 17,483 healthy controls. Imputing missing variants from 7,729 complete mitochondrial genomes, we captured 40.41% of European mtDNA variation. We show that mtDNA variants modifying the risk of developing one disease also modify the risk of developing other diseases, thus providing independent replication of a disease association in different case and control cohorts. High-risk alleles were more common than protective alleles, indicating that mtDNA is not at equilibrium in the human population, and that recent mutations interact with nuclear loci to modify the risk of developing multiple common diseases.
    PLoS Genetics 05/2014; 10(5):e1004369. DOI:10.1371/journal.pgen.1004369 · 8.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Oxidative stress and mitochondrial damage have been implicated in the pathogenesis of several neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. Oxidative stress is characterized by the overproduction of reactive oxygen species, which can induce mitochondrial DNA mutations, damage the mitochondrial respiratory chain, alter membrane permeability, and influence Ca(2+) homeostasis and mitochondrial defense systems. All these changes are implicated in the development of these neurodegenerative diseases, mediating or amplifying neuronal dysfunction and triggering neurodegeneration. This paper summarizes the contribution of oxidative stress and mitochondrial damage to the onset of neurodegenerative eases and discusses strategies to modify mitochondrial dysfunction that may be attractive therapeutic interventions for the treatment of various neurodegenerative diseases.
    Neural Regeneration Research 07/2013; 8(21):2003-14. DOI:10.3969/j.issn.1673-5374.2013.21.009 · 0.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study of 200 Caucasian women shows that the distribution of the mtDNA macro-haplogroups in patients with diminished ovarian reserve (DOR) differed significantly from that of patients with normal ovarian reserve (NOR) (p = 0.02). The JT macro-haplogroup was significantly under-represented in DOR patients compared with NOR patients (p = 0.006) and compared with the estimated frequency of 18.8% in the general French population (p = 0.0012). Our findings suggest that the risk of a prematurely depleted ovarian reserve would be three times lower for patients carrying the JT macro-haplogroup than for patients with any of the other mtDNA haplogroups (odds ratio: 0.3; 95% CI: 0.13-0.74). If these preliminary results are confirmed in larger independent studies, they should lead to the better management of infertility.
    Mitochondrion 08/2014; DOI:10.1016/j.mito.2014.08.002 · 3.52 Impact Factor

Full-text

Download
22 Downloads
Available from
Aug 27, 2014