Article

Improvement of endothelial nitric oxide synthase activity retards the progression of diabetic nephropathy in db/db mice.

Division of Nephrology, Department of Medicine, George M. O'Brien Kidney and Urologic Diseases Center, Vanderbilt University School of Medicine, Nashville Veterans Affairs Hospital, Nashville, Tennessee, USA.
Kidney International (Impact Factor: 8.52). 07/2012; DOI: 10.1038/ki.2012.248
Source: PubMed

ABSTRACT Impaired endothelial nitric oxide synthase (eNOS) activity may be involved in the pathogenesis of diabetic nephropathy. To test this, we used the type 2 diabetic db/db mouse (BKS background) model and found impaired eNOS dimerization and phosphorylation along with moderate glomerular mesangial expansion and increased glomerular basement membrane (GBM) thickness at 34 weeks of age. Cultured murine glomerular endothelial cells exposed to high glucose had similar alterations in eNOS dimerization and phosphorylation. Treatment with sepiapterin, a stable precursor of the eNOS cofactor tetrahydrobiopterin, or the nitric oxide precursor L-arginine corrected changes in eNOS dimerization and phosphorylation, corrected permeability defects, and reduced apoptosis. Sepiapterin or L-arginine, administered to db/db mice from weeks 26 to 34, did not significantly alter hyperfiltration or affect mesangial expansion, but reduced albuminuria and GBM thickness, and decreased urinary isoprostane and nitrotyrosine excretion (markers of oxidative stress). Although there was no change in glomerular eNOS monomer expression, both sepiapterin and L-arginine partially reversed the defect in eNOS dimerization and phosphorylation. Hence, our results support an important role for eNOS dysfunction in diabetes and suggest that sepiapterin supplementation might have therapeutic potential in diabetic nephropathy.Kidney International advance online publication, 11 July 2012; doi:10.1038/ki.2012.248.

0 Bookmarks
 · 
56 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Endothelial dysfunction has been shown to promote podocyte injury and albuminuria in diabetes, highlighting the importance of the interaction between renal endothelial cells and podocytes. Folic acid (FA) improves nitric oxide synthase (NOS) function and ameliorates progression of diabetic nephropathy in animal models. We tested whether high-dose FA treatment improves renal endothelial function and albuminuria in human subjects with incipient diabetic nephropathy. Following a double-blind, randomized cross-over design, 28 patients with type 2 diabetes and albuminuria were allocated to 4-weeks treatment with placebo and high-dose FA (5 mg/day). Renal NO production determined as response of renal plasma flow (RPF) to NOS inhibition with N(G)-monomethyl-L-arginine (4.25 mg/kg i.v.), renal oxidant stress as the response of RPF to vitamin C infusion (3mg/kg) and albuminuria were determined after each treatment phase. Neither the reduction of RPF to L-NMMA nor the increase of RPF to vitamin C infusion differed between treatment phases (ΔRPF to L-NMMA: -74±71 ml/min/m2 during placebo versus -63±56 ml/min/m2 during FA, P=0.57; ΔRPF to vitamin C: +93±118 ml/min/m2 versus +94±108 ml/min/m2; P=0.70). In line with the lack of effect on the renal endothelium, albuminuria was not affected by FA treatment (110±179 mg/day during placebo versus 87±146 mg/day during FA; P=0.12). High-dose FA treatment does not improve renal endothelial function and fails to reduce albuminuria in human subjects with diabetic nephropathy. Novel treatment options for oxidant stress and endothelial dysfunction in patients with diabetes are urgently needed.
    Clinical Science 04/2014; · 4.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glomerular nodular lesions, known as Kimmelstiel-Wilson nodules, are a pathological hallmark of progressive human diabetic nephropathy. We have induced severe diabetes in pigs carrying a dominant-negative mutant hepatocyte nuclear factor 1-alpha (HNF1α) P291fsinsC, a maturity-onset diabetes of the young type-3 (MODY3) gene in humans. In this model, glomerular pathology revealed that formation of diffuse glomerular nodules commenced as young as 1 month of age and increased in size and incidence until the age of 10 months, the end of the study period. Immunohistochemistry showed that the nodules consisted of various collagen types (I, III, IV, V and VI) with advanced glycation end-product (AGE) and Nε-carboxymethyl-lysine (CML) deposition, similar to those in human diabetic nodules, except for collagen type I. Transforming growth factor-beta (TGF-β) was also expressed exclusively in the nodules. The ultrastructure of the nodules comprised predominant interstitial-type collagen deposition arising from the mesangial matrices. Curiously, these nodules were found predominantly in the deep cortex. However, diabetic pigs failed to show any of the features characteristic of human diabetic nephropathy; e.g., proteinuria, glomerular basement membrane thickening, exudative lesions, mesangiolysis, tubular atrophy, interstitial fibrosis, and vascular hyalinosis. The pigs showed only Armanni-Ebstein lesions, a characteristic tubular manifestation in human diabetes. RT-PCR analysis showed that glomeruli in wild-type pigs did not express endogenous HNF1α and HNF1β, indicating that mutant HNF1α did not directly contribute to glomerular nodular formation in diabetic pigs. In conclusion, pigs harboring the dominant-negative mutant human MODY3 gene showed reproducible and distinct glomerular nodules, possibly due to AGE- and CML-based collagen accumulation. Although the pathology differed in several respects from that of human glomerular nodular lesions, the somewhat acute and constitutive formation of nodules in this mammalian model might provide information facilitating identification of the principal mechanism underlying diabetic nodular sclerosis.
    PLoS ONE 01/2014; 9(3):e92219. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The manipulation of vascular endothelial growth factor (VEGF)-receptors (VEGFRs) in diabetic nephropathy is as controversial as issue as ever. It is known to be VEGF-A and VEGFR2 that regulate most of the cellular actions of VEGF in experimental diabetic nephropathy. On the other hand, such factors as VEGF-A, -B and placenta growth factor bind to VEGFR1 with high affinity. Such notion instigated us to investigate on whether selective VEGFR1 inhibition with GNQWFI hexamer aggravates the progression of diabetic nephropathy in db/db mice. While diabetes suppressed VEGFR1, it did increase VEGFR2 expressions in the glomerulus. Db/db mice with VEGFR1 inhibition showed more prominent features with respect to, albuminuria, mesangial matrix expansion, inflammatory cell infiltration and greater numbers of apoptotic cells in the glomerulus, and oxidative stress than that of control db/db mice. All these changes were related to the suppression of diabetes-induced increases in PI3K activity and Akt phosphorylation as well as the aggravation of endothelial dysfunction associated with the inactivation of FoxO3a and eNOS-NOx. In cultured human glomerular endothelial cells (HGECs), high-glucose media with VEGFR1 inhibition induced more apoptotic cells and oxidative stress than did high-glucose media alone, which were associated with the suppression of PI3K-Akt phosphorylation, independently of the activation of AMP-activated protein kinase, and inactivation of FoxO3a and eNOS-NOx pathway. In addition, transfection with VEGFR1 siRNA in HGECs also suppressed PI3K-Akt-eNOS signaling. In conclusion, the specific blockade of VEGFR1 with GNQWFI caused severe renal injury related to profound suppression of the PI3K-Akt, FoxO3a and eNOS-NOx pathway, giving rise to the oxidative stress-induced apoptosis of glomerular cells in type 2 diabetic nephropathy.
    PLoS ONE 01/2014; 9(4):e94540. · 3.53 Impact Factor

Full-text (2 Sources)

View
12 Downloads
Available from
Jun 2, 2014