Article

NeuroD1 is required for survival of photoreceptors but not pinealocytes: Results from targeted gene deletion studies.

Section on Neuroendocrinology, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA Institute of Histology and Embryology, School of Medicine, National University of Cuyo, National Council of Research, Science and Technology (CONICET), ANPCyT, Mendoza, Argentina Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA Department of Ophthalmology and Pharmacology, Emory University School of Medicine, Atlanta, GA, USA Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany Institute for Protein Research & CREST-JST, Osaka University, Osaka, Japan.
Journal of Neurochemistry (Impact Factor: 4.24). 07/2012; 123(1):44-59. DOI: 10.1111/j.1471-4159.2012.07870.x
Source: PubMed

ABSTRACT NeuroD1 encodes a basic helix-loop-helix transcription factor involved in the development of neural and endocrine structures, including the retina and pineal gland. To determine the effect of NeuroD1 knockout in these tissues, a Cre/loxP recombination strategy was used to target a NeuroD1 floxed gene and generate NeuroD1 conditional knockout (cKO) mice. Tissue specificity was conferred using Cre recombinase expressed under the control of the promoter of Crx, which is selectively expressed in the pineal gland and retina. At 2 months of age, NeuroD1 cKO retinas have a dramatic reduction in rod- and cone-driven electroretinograms and contain shortened and disorganized outer segments; by 4 months, NeuroD1 cKO retinas are devoid of photoreceptors. In contrast, the NeuroD1 cKO pineal gland appears histologically normal. Microarray analysis of 2-month-old NeuroD1 cKO retina and pineal gland identified a subset of genes that were affected 2-100-fold; in addition, a small group of genes exhibit altered differential night/day expression. Included in the down-regulated genes are Aipl1, which is necessary to prevent retinal degeneration, and Ankrd33, whose protein product is selectively expressed in the outer segments. These findings suggest that NeuroD1 may act through Aipl1 and other genes to maintain photoreceptor homeostasis.

1 Bookmark
 · 
111 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study is to investigate the influence of Lenti-EGFP-NeuroD-miR, RNAi lentiviral expression vector, on the expression level of NeuroD and migration, and invasion of PANC-1 cell line. PANC-1 cells were cultured and cotransfected with Lenti-EGFP-NeuroD-miR and Lenti-GFP. The infection rate of lentivirus was determined by fluorescence. The interfering effection by the expression of NeuroD mRNA in PANC-1 cells was analyzed by real-time PCR after transfected. Biological behavior of PANC-1 cells transinfected was observed, and the migration and invasion were studied by transwell assay. Intrapancreatic allografts model in nude mice was established to observe the effects of NeuroD on tumorigenesis, tumor growth, and invasion in vivo. The expression of NeuroD mRNA decreased significantly after RNAi lentivirus transinfecting PANC-1 cell. The cell's migration and invasion ability decreased obviously as soon as down regulate of NeuroD in PANC-1 cells. Comparing with control group, the tumors were smaller in size and the invasiveness was inhibited after 8 weeks intrapancreatic allografts in nude mice. Lenti-EGFP-NeuroD-miR transfected into PANC-1 cells shows a stable, effective, and especial blocking expression of NeuroD in mRNA level. The RNAi of lentiviral vector target NeuroD can reduce the migration and invasion abilities of PANC-1 cells.
    Cell biochemistry and biophysics 01/2014; 69(3). DOI:10.1007/s12013-014-9822-x · 3.34 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: With the establishment of the 'neuron theory' at the turn of the twentieth century, this remarkably powerful term was introduced to name a breathtaking diversity of cells unified by a characteristic structural compartmentalization and unique information processing and propagating features. At the beginning of the twenty-first century, developmental, stem cell and reprogramming studies converged to suggest a common mechanism involved in the generation of possibly all vertebrate, and at least a significant number of invertebrate, neurons. Sox and, in particular, SoxB and SoxC proteins as well as basic helix-loop-helix proteins play major roles, even though their precise contributions to progenitor programming, proliferation and differentiation are not fully resolved. In addition to neuronal development, these transcription factors also regulate sensory receptor and endocrine cell development, thus specifying a range of cells with regulatory and communicative functions. To what extent microRNAs contribute to the diversification of these cell types is an upcoming question. Understanding the transcriptional and post-transcriptional regulation of genes coding for cell type-specific cytoskeletal and motor proteins as well as synaptic and ion channel proteins, which mark differences but also similarities between the three communicator cell types, will provide a key to the comprehension of their diversification and the signature of 'generic neuronal' differentiation. Apart from the general scientific significance of a putative universal core instruction for neuronal development, the impact of this line of research for cell replacement therapy and brain tumor treatment will be of considerable interest.
    Cell and Tissue Research 11/2014; 359(1). DOI:10.1007/s00441-014-2049-8 · 3.33 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: NEUROD1 is a tissue-specific basic helix loop helix (bHLH) protein involved in the development and maintenance of the endocrine pancreas and neuronal elements. Loss of NEUROD1 causes ataxia, cerebellar hypoplasia, sensorineural deafness, and severe retinal dystrophy in mice. Heterozygous loss-of-function mutations in NEUROD1 have previously been described as a cause of maturity-onset diabetes of the young (MODY) and late-onset diabetes. To date, homozygous loss-of-function NEUROD1 mutations have only been detected in two patients. Both mutations caused permanent neonatal diabetes and severe neurologic defects, including visual impairment. However, a detailed ophthalmological phenotype of this novel syndrome has not yet been reported. Our aim was to characterize the ophthalmological phenotype associated with the previously reported homozygous c.427_428CT mutation in the NEUROD1 gene. The female patient was investigated on multiple occasions between 2009 (age 14) and 2014 (age 19), including visual acuity testing, automated perimetry, funduscopy, anterior-segment imaging, optical coherence tomography of the posterior pole, standard full-field electroretinography, and fundus-autofluorescence imaging. The patient had nyctalopia, blurry vision, and visual field constriction from early childhood. Her best corrected visual acuity ranged between 20/25 and 15/25 during the investigation period. Perimetry showed concentric constriction of the visual field, sparing only the central 30 degrees in both eyes. The anterior segment did not show any morphological changes. Optical coherence tomography revealed total absence of the photoreceptor layer of the retina outside the fovea, where a discoid remnant of cone photoreceptors could be detected. Neither setting of the standard full-field electroretinography could detect any electrical response from the retina. Color fundus photos presented peripheral chorioretinal atrophy and central RPE mottling. A hyperreflective parafoveal ring was detected on fundus autofluorescent photos, a characteristic sign of hereditary retinal dystrophies. To the best of our knowledge, this is the first report on the ophthalmological phenotype associating with a homozygous NEUROD1 null mutation in humans. Our results indicate that the loss of NEUROD1 has similar functional and anatomic consequences in the human retina as those described in mice. The present description can help the diagnosis of future cases and provide clues on the rate of disease progression.
    Molecular vision 21:124-130. · 2.25 Impact Factor

Full-text (2 Sources)

Download
12 Downloads
Available from
Oct 6, 2014