Article

The tyrosine phosphatase STEP: implications in schizophrenia and the molecular mechanism underlying antipsychotic medications.

Child Study Center, Yale University School of Medicine, New Haven, CT 06520-7900, USA.
Translational psychiatry 01/2012; 2:e137. DOI: 10.1038/tp.2012.63
Source: PubMed

ABSTRACT Glutamatergic signaling through N-methyl-D-aspartate receptors (NMDARs) is required for synaptic plasticity. Disruptions in glutamatergic signaling are proposed to contribute to the behavioral and cognitive deficits observed in schizophrenia (SZ). One possible source of compromised glutamatergic function in SZ is decreased surface expression of GluN2B-containing NMDARs. STEP(61) is a brain-enriched protein tyrosine phosphatase that dephosphorylates a regulatory tyrosine on GluN2B, thereby promoting its internalization. Here, we report that STEP(61) levels are significantly higher in the postmortem anterior cingulate cortex and dorsolateral prefrontal cortex of SZ patients, as well as in mice treated with the psychotomimetics MK-801 and phencyclidine (PCP). Accumulation of STEP(61) after MK-801 treatment is due to a disruption in the ubiquitin proteasome system that normally degrades STEP(61). STEP knockout mice are less sensitive to both the locomotor and cognitive effects of acute and chronic administration of PCP, supporting the functional relevance of increased STEP(61) levels in SZ. In addition, chronic treatment of mice with both typical and atypical antipsychotic medications results in a protein kinase A-mediated phosphorylation and inactivation of STEP(61) and, consequently, increased surface expression of GluN1/GluN2B receptors. Taken together, our findings suggest that STEP(61) accumulation may contribute to the pathophysiology of SZ. Moreover, we show a mechanistic link between neuroleptic treatment, STEP(61) inactivation and increased surface expression of NMDARs, consistent with the glutamate hypothesis of SZ.

0 Bookmarks
 · 
102 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Candidate genes associated with idiopathic forms of autism overlap with other disorders including fragile X syndrome. Our laboratory has previously shown reduction in fragile X mental retardation protein (FMRP) and increase in metabotropic glutamate receptor 5 (mGluR5) in cerebellar vermis and superior frontal cortex (BA9) of individuals with autism. In the current study we have investigated expression of four targets of FMRP and mGluR5 signaling - homer 1, amyloid beta A4 precursor protein (APP), ras-related C3 botulinum toxin substrate 1 (RAC1), and striatal-enriched protein tyrosine phosphatase (STEP) - in the cerebellar vermis and superior frontal cortex (BA9) via SDS-PAGE and western blotting. Data were analyzed based on stratification with respect to age (children and adolescents vs. adults), anatomic region of the brain (BA9 vs. cerebellar vermis), and impact of medications (children and adolescents on medications (n = 4) vs. total children and adolescents (n = 12); adults on medications (n = 6) vs. total adults (n = 12)). There were significant increases in RAC1, APP 120 kDa and APP 80 kDa proteins in BA9 of children with autism vs. healthy controls. None of the same proteins were significantly affected in cerebellar vermis of children with autism. In BA9 of adults with autism there were significant increases in RAC1 and STEP 46 kDa and a significant decrease in homer 1 vs. controls. In the vermis of adult subjects with autism, RAC1 was significantly increased while APP 120, STEP 66 kDa, STEP 27 kDa, and homer 1 were significantly decreased when compared with healthy controls. No changes were observed in vermis of children with autism. There was a significant effect of anticonvulsant use on STEP 46 kDa/beta-actin and a potential effect on homer 1/NSE, in BA9 of adults with autism. However, no other significant confound effects were observed in this study. Our findings provide further evidence of abnormalities in FMRP and mGluR5 signaling partners in brains of individuals with autism and open the door to potential targeted treatments which could help ameliorate the symptoms of autism.
    Molecular Autism 06/2013; 4(1):21. · 5.49 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: STriatal-Enriched protein tyrosine Phosphatase (STEP; PTPN5) is expressed in brain regions displaying adult neuroplasticity. STEP modulates neurotransmission by dephosphorylating regulatory tyrosine residues on its substrates. In this way, STEP inactivates extracellular-signal-regulated kinase 1/2 (ERK1/2), limiting the duration and spatial distribution of ERK signaling. Two additional substrates, the tyrosine kinase Fyn and the NR2B subunit of the N-methyl-d-aspartic acid receptor, link STEP to glutamate receptor internalization in the synapse. Thus, STEP may act through parallel pathways to oppose the development of experience-dependent synaptic plasticity. We examined the hypothesis that the absence of STEP facilitates amygdala-dependent behavioral and synaptic plasticity (i.e., fear conditioning and long-term potentiation) using STEP-deficient mice (STEP KO). These mice show no detectable expression of STEP in the brain along with increases in Tyr phosphorylation of STEP substrates. Here we demonstrate that STEP KO mice also display augmented fear conditioning as measured by an enhancement in conditioned suppression of instrumental response when a fear-associated conditioned stimulus was presented. Deletion of STEP also increases long-term potentiation and ERK phosphorylation in the lateral amygdala. The current experiments demonstrate that deletion of STEP can enhance experience-induced neuroplasticity and memory formation and identifies STEP as a target for pharmacological treatment aimed at improving the formation of long-term memories.
    Neuroscience 08/2012; 225:1-8. · 3.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The striatum is a brain area implicated in the pharmacological action of drugs of abuse. Adenosine A2A receptors (A2ARs) are highly expressed in the striatum and mediate, at least in part, cocaine-induced psychomotor effects in vivo. Here, we studied the synaptic mechanisms implicated in the pharmacological action of cocaine in the striatum and investigated the influence of A2ARs. We found that synaptic transmission was depressed in corticostriatal slices after perfusion with cocaine (10 μM). This effect was reduced by the A2AR antagonist ZM241385 and almost abolished in striatal A2AR knockout mice (mice lacking A2ARs in striatal neurons, stA2ARKO). The effect of cocaine on synaptic transmission was also prevented by the protein tyrosine phosphatases (PTPs) inhibitor sodium orthovanadate (Na3VO4). In synaptosomes prepared from striatal slices we found that the activity of STriatal-Enriched protein tyrosine Phosphatase (STEP) was up-regulated by cocaine, prevented by ZM241385 and absent in synaptosomes from stA2ARKO. The role played by STEP in cocaine modulation of synaptic transmission was investigated in whole cell voltage clamp recordings from medium spiny neurons of the striatum. We found that TAT-STEP, a peptide that renders STEP enzymatically inactive, prevented cocaine-induced reduction of AMPA- and NMDA-mediated excitatory post-synaptic currents, while the control peptide, TAT-myc, had no effect. These results demonstrate that striatal A2ARs modulate cocaine-induced synaptic depression in the striatum and highlight the potential role of PTPs and specifically STEP in the effects of cocaine.Leukemia accepted article preview online, 30 August 2013. doi:10.1038/npp.2013.229.
    Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology 08/2013; · 8.68 Impact Factor

Full-text (2 Sources)

View
15 Downloads
Available from
May 29, 2014

Niki Carty