Article

The tyrosine phosphatase STEP: implications in schizophrenia and the molecular mechanism underlying antipsychotic medications

Child Study Center, Yale University School of Medicine, New Haven, CT 06520-7900, USA.
Translational Psychiatry (Impact Factor: 4.36). 07/2012; 2(7):e137. DOI: 10.1038/tp.2012.63
Source: PubMed

ABSTRACT Glutamatergic signaling through N-methyl-D-aspartate receptors (NMDARs) is required for synaptic plasticity. Disruptions in glutamatergic signaling are proposed to contribute to the behavioral and cognitive deficits observed in schizophrenia (SZ). One possible source of compromised glutamatergic function in SZ is decreased surface expression of GluN2B-containing NMDARs. STEP(61) is a brain-enriched protein tyrosine phosphatase that dephosphorylates a regulatory tyrosine on GluN2B, thereby promoting its internalization. Here, we report that STEP(61) levels are significantly higher in the postmortem anterior cingulate cortex and dorsolateral prefrontal cortex of SZ patients, as well as in mice treated with the psychotomimetics MK-801 and phencyclidine (PCP). Accumulation of STEP(61) after MK-801 treatment is due to a disruption in the ubiquitin proteasome system that normally degrades STEP(61). STEP knockout mice are less sensitive to both the locomotor and cognitive effects of acute and chronic administration of PCP, supporting the functional relevance of increased STEP(61) levels in SZ. In addition, chronic treatment of mice with both typical and atypical antipsychotic medications results in a protein kinase A-mediated phosphorylation and inactivation of STEP(61) and, consequently, increased surface expression of GluN1/GluN2B receptors. Taken together, our findings suggest that STEP(61) accumulation may contribute to the pathophysiology of SZ. Moreover, we show a mechanistic link between neuroleptic treatment, STEP(61) inactivation and increased surface expression of NMDARs, consistent with the glutamate hypothesis of SZ.

Download full-text

Full-text

Available from: Pradeep Kurup, Sep 01, 2015
1 Follower
 · 
142 Views
 · 
26 Downloads
  • Source
    • "Recent investigations have implicated STEP in the etiology of neuropsychiatric disorders [74]. Carty et al. [75] reported significant increases in STEP 61 kDa in the anterior cingulate and dorsolateral prefrontal cortices of subjects with schizophrenia. STEP has roles in mediating NMDA and AMPA receptor endocytosis [70,76], suggesting that it has a role in mGluR5-mediated long-term depression (LTD), a phenomenon that is enhanced in Fmr1 KO mice [77]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Candidate genes associated with idiopathic forms of autism overlap with other disorders including fragile X syndrome. Our laboratory has previously shown reduction in fragile X mental retardation protein (FMRP) and increase in metabotropic glutamate receptor 5 (mGluR5) in cerebellar vermis and superior frontal cortex (BA9) of individuals with autism. In the current study we have investigated expression of four targets of FMRP and mGluR5 signaling - homer 1, amyloid beta A4 precursor protein (APP), ras-related C3 botulinum toxin substrate 1 (RAC1), and striatal-enriched protein tyrosine phosphatase (STEP) - in the cerebellar vermis and superior frontal cortex (BA9) via SDS-PAGE and western blotting. Data were analyzed based on stratification with respect to age (children and adolescents vs. adults), anatomic region of the brain (BA9 vs. cerebellar vermis), and impact of medications (children and adolescents on medications (n = 4) vs. total children and adolescents (n = 12); adults on medications (n = 6) vs. total adults (n = 12)). There were significant increases in RAC1, APP 120 kDa and APP 80 kDa proteins in BA9 of children with autism vs. healthy controls. None of the same proteins were significantly affected in cerebellar vermis of children with autism. In BA9 of adults with autism there were significant increases in RAC1 and STEP 46 kDa and a significant decrease in homer 1 vs. controls. In the vermis of adult subjects with autism, RAC1 was significantly increased while APP 120, STEP 66 kDa, STEP 27 kDa, and homer 1 were significantly decreased when compared with healthy controls. No changes were observed in vermis of children with autism. There was a significant effect of anticonvulsant use on STEP 46 kDa/beta-actin and a potential effect on homer 1/NSE, in BA9 of adults with autism. However, no other significant confound effects were observed in this study. Our findings provide further evidence of abnormalities in FMRP and mGluR5 signaling partners in brains of individuals with autism and open the door to potential targeted treatments which could help ameliorate the symptoms of autism.
    Molecular Autism 06/2013; 4(1):21. DOI:10.1186/2040-2392-4-21 · 5.49 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: STriatal-Enriched protein tyrosine Phosphatase (STEP; PTPN5) is expressed in brain regions displaying adult neuroplasticity. STEP modulates neurotransmission by dephosphorylating regulatory tyrosine residues on its substrates. In this way, STEP inactivates extracellular-signal-regulated kinase 1/2 (ERK1/2), limiting the duration and spatial distribution of ERK signaling. Two additional substrates, the tyrosine kinase Fyn and the NR2B subunit of the N-methyl-d-aspartic acid receptor, link STEP to glutamate receptor internalization in the synapse. Thus, STEP may act through parallel pathways to oppose the development of experience-dependent synaptic plasticity. We examined the hypothesis that the absence of STEP facilitates amygdala-dependent behavioral and synaptic plasticity (i.e., fear conditioning and long-term potentiation) using STEP-deficient mice (STEP KO). These mice show no detectable expression of STEP in the brain along with increases in Tyr phosphorylation of STEP substrates. Here we demonstrate that STEP KO mice also display augmented fear conditioning as measured by an enhancement in conditioned suppression of instrumental response when a fear-associated conditioned stimulus was presented. Deletion of STEP also increases long-term potentiation and ERK phosphorylation in the lateral amygdala. The current experiments demonstrate that deletion of STEP can enhance experience-induced neuroplasticity and memory formation and identifies STEP as a target for pharmacological treatment aimed at improving the formation of long-term memories.
    Neuroscience 08/2012; 225:1-8. DOI:10.1016/j.neuroscience.2012.07.069 · 3.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Synaptic function is critical for proper cognition, and synaptopathologies have been implicated in diverse neuropsychiatric disorders. STriatal-Enriched protein tyrosine Phosphatase (STEP) is a brain-enriched tyrosine phosphatase that normally opposes synaptic strengthening by dephosphorylating key neuronal signaling molecules. STEP targets include N-methyl D-aspartate receptors (NMDARs) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs), as well as extracellular signal-regulated kinase (ERK) and the tyrosine kinase Fyn. STEP-mediated dephosphorylation promotes the internalization of NMDARs and AMPARs and the inactivation of ERK and Fyn.Regulation of STEP is complex, and recent work has implicated STEP dysregulation in the pathophysiology of several neuropsychiatric disorders. Both high levels and low levels of STEP are found in a diverse group of illnesses. This review focuses on the role of STEP in three disorders in which STEP levels are elevated: Alzheimer's disease, fragile X syndrome, and schizophrenia. The presence of elevated STEP in all three of these disorders raises the intriguing possibility that cognitive deficits resulting from diverse etiologies may share a common molecular pathway.
    The Yale journal of biology and medicine 12/2012; 85(4):481-90.
Show more