Article

Multiple sites of the cleavage of 17- and 19-mer encephalytogenic oligopeptides corresponding to human myelin basic protein (MBP) by specific anti-MBP antibodies from patients with systemic lupus erythematosus.

Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, Lavrentiev Ave. 8, Novosibirsk 630090, Russia.
Peptides (Impact Factor: 2.52). 07/2012; 37(1):69-78. DOI:10.1016/j.peptides.2012.07.003
Source: PubMed

ABSTRACT In contrast to canonical proteases, myelin basic protein (MBP)-Sepharose-purified IgG from multiple sclerosis (MS) and systemic lupus erythematosus (SLE) patients efficiently hydrolyze only MBP, but not many other tested proteins. It was shown that anti-MBP SLE IgGs cleave nonspecific tri- and tetrapeptides with an extremely low efficiency and cannot efficiently hydrolyse longer oligopeptides corresponding to antigenic determinants (AGDs) of HIV-1 integrase. To identify all sites of IgG-mediated proteolysis corresponding to two AGDs of MBP, we have used a combination of reverse-phase chromatography (RPhC), MALDI spectrometry, and TLC to analyze the cleavage products of two (17- and 19-mer) encephalytogenic oligopeptides corresponding to these AGDs. Both oligopeptides contained several clustered major and minor sites of cleavage. The active sites of anti-MBP abzymes are localized on their light chains, while the heavy chains are responsible for the affinity of protein substrates. Interactions of intact globular proteins with both light and heavy chains of abzymes provide high specificity of MBP hydrolysis. The affinity of anti-MBP abzymes for intact MBP was ∼10(3)-fold higher than for the oligopeptides. The data suggest that both oligopeptides interact mainly with the light chain of different monoclonal abzymes of total pool of IgGs, which possesses lower affinity for substrates, and therefore, depending on the oligopeptide sequences, their hydrolysis may be less specific.

0 0
 · 
0 Bookmarks
 · 
47 Views
  • [show abstract] [hide abstract]
    ABSTRACT: Human immunodeficiency virus-infected patients possess anti-integrase (IN) catalytic IgGs and IgMs (abzymes), which, unlike canonical proteases, specifically hydrolyze only intact globular IN. Anti-myelin MBP abzymes from patients with multiple sclerosis and systemic lupus erythematosus efficiently hydrolyze only intact MBP. Anti-MBP and anti-IN abzymes do not hydrolyze several other tested control globular proteins. Here, we show that anti-IN abzymes efficiently hydrolyze a 21-mer oligopeptide (OP21) corresponding to one antigenic determinant (AGD) of MBP, whereas anti-MBP abzymes extremely poorly cleave oligopeptides corresponding to AGDs of IN. All sites of IgG-mediated and IgM-mediated proteolysis of OP21 by anti-IN abzymes were found for the first time by a combination of reverse phase and thin layer chromatography and mass spectrometry. Several clustered sites of OP21 cleavage were revealed and compared with the cleavage sites within the complete IN. Several fragments of OP21 had good homology with many fragments of the IN sequence. The active sites of anti-IN abzymes are known to be located on their light chains, whereas heavy chains are responsible for the affinity for protein substrates. Interactions of intact IN with both light and heavy chains of the abzymes provide high affinity for IN and the specificity of its hydrolysis. Our data suggest that OP21 interacts mainly with the light chains of polyclonal anti-IN abzymes, which possess lower affinity and specificity for substrate. The hydrolysis of the non-cognate OP21 oligopeptide may be also less specific than the hydrolysis of the globular IN because in contrast to previously described serine protease-like abzymes against different proteins, anti-IN abzymes possess serine, thiol, acidic, and metal-dependent protease activities. Copyright © 2013 John Wiley & Sons, Ltd.
    Journal of Molecular Recognition 01/2014; 27(1):32-45. · 3.01 Impact Factor

Full-text

View
0 Downloads
Available from

Anna M Bezuglova