Multiple Sites of the Cleavage of 21- and 25-Mer Encephalytogenic Oligopeptides Corresponding to Human Myelin Basic Protein (MBP) by Specific Anti-MBP Antibodies from Patients with Systemic Lupus Erythematosus

Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, Lavrentiev Ave. 8, Novosibirsk 630090, Russia.
Peptides (Impact Factor: 2.62). 07/2012; 37(1):69-78. DOI: 10.1016/j.peptides.2012.07.003
Source: PubMed


In contrast to canonical proteases, myelin basic protein (MBP)-Sepharose-purified IgG from multiple sclerosis (MS) and systemic lupus erythematosus (SLE) patients efficiently hydrolyze only MBP, but not many other tested proteins. It was shown that anti-MBP SLE IgGs cleave nonspecific tri- and tetrapeptides with an extremely low efficiency and cannot efficiently hydrolyse longer oligopeptides corresponding to antigenic determinants (AGDs) of HIV-1 integrase. To identify all sites of IgG-mediated proteolysis corresponding to two AGDs of MBP, we have used a combination of reverse-phase chromatography (RPhC), MALDI spectrometry, and TLC to analyze the cleavage products of two (17- and 19-mer) encephalytogenic oligopeptides corresponding to these AGDs. Both oligopeptides contained several clustered major and minor sites of cleavage. The active sites of anti-MBP abzymes are localized on their light chains, while the heavy chains are responsible for the affinity of protein substrates. Interactions of intact globular proteins with both light and heavy chains of abzymes provide high specificity of MBP hydrolysis. The affinity of anti-MBP abzymes for intact MBP was ∼10(3)-fold higher than for the oligopeptides. The data suggest that both oligopeptides interact mainly with the light chain of different monoclonal abzymes of total pool of IgGs, which possesses lower affinity for substrates, and therefore, depending on the oligopeptide sequences, their hydrolysis may be less specific.

119 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human immunodeficiency virus-infected patients possess anti-integrase (IN) catalytic IgGs and IgMs (abzymes), which, unlike canonical proteases, specifically hydrolyze only intact globular IN. Anti-myelin MBP abzymes from patients with multiple sclerosis and systemic lupus erythematosus efficiently hydrolyze only intact MBP. Anti-MBP and anti-IN abzymes do not hydrolyze several other tested control globular proteins. Here, we show that anti-IN abzymes efficiently hydrolyze a 21-mer oligopeptide (OP21) corresponding to one antigenic determinant (AGD) of MBP, whereas anti-MBP abzymes extremely poorly cleave oligopeptides corresponding to AGDs of IN. All sites of IgG-mediated and IgM-mediated proteolysis of OP21 by anti-IN abzymes were found for the first time by a combination of reverse phase and thin layer chromatography and mass spectrometry. Several clustered sites of OP21 cleavage were revealed and compared with the cleavage sites within the complete IN. Several fragments of OP21 had good homology with many fragments of the IN sequence. The active sites of anti-IN abzymes are known to be located on their light chains, whereas heavy chains are responsible for the affinity for protein substrates. Interactions of intact IN with both light and heavy chains of the abzymes provide high affinity for IN and the specificity of its hydrolysis. Our data suggest that OP21 interacts mainly with the light chains of polyclonal anti-IN abzymes, which possess lower affinity and specificity for substrate. The hydrolysis of the non-cognate OP21 oligopeptide may be also less specific than the hydrolysis of the globular IN because in contrast to previously described serine protease-like abzymes against different proteins, anti-IN abzymes possess serine, thiol, acidic, and metal-dependent protease activities. Copyright © 2013 John Wiley & Sons, Ltd.
    Journal of Molecular Recognition 01/2014; 27(1):32-45. DOI:10.1002/jmr.2329 · 2.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To evaluate the effect of Tanreqing injection on axon myelin in the mouse brain of experimental autoimmune encephalomyelitis (EAE). An EAE model was established by myelin oligodendrocyte glycoprotein (MOG)35-55 immunization in C57BL/6 mice. Mice were randomly divided into the following groups: normal, model, prednisone acetate (PA) (6 mg/kg), Tanreqing high dose (5.14 mL/kg), Tanreqing low dose (2.57 mL/kg). On the day of immunization, both Tanreqing groups were treated by intraperitoneal injection, with the PA group treated by intragastrical perfusion after T cell response, and the other groups treated with saline. Changes in body weight, neurological deficit score, incidence rate, mortality rate, and course of disease were observed for all mice. Brain tissue was isolated and stained with hematoxylin-eosin, and pathological investigations performed to evaluate axon myelin damage by transmission electron microscopy (TEM). Myelin basic protein and microtubule associated protein-2 were analyzed by immunohistochemistry. Tanreqing injection significantly prolonged EAE latency and decreased the neurological deficit score, alleviated infiltration of inflammatory cells in the focus area, up-regulated hippocampal MBP expression at the acute stage and the remission stage, and increased microtubule associated protein-2 expression in the EAE brain to varying degrees in the acute stage. TEM analysis indicated that Tanreqing injection alleviates myelin damage in the EAE mouse and maintains the integrity of circular layer structures and alleviates axon mitochondrial swelling. Tanreqing injection alleviates EAE symptoms.
    Journal of Traditional Chinese Medicine 10/2014; 34(5):576-83. DOI:10.1016/S0254-6272(15)30066-2 · 0.72 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: It was shown previously that, as differentiated from canonical proteases, abzymes against myelin basic protein (MBP) from blood of patients with multiple sclerosis and systemic lupus erythematosus effectively cleaved only MBP, while antibodies (ABs) against integrase (IN) from blood of HIV-infected patients specifically hydrolyzed only IN. In this work, all sites of effective hydrolysis by anti-IN antibodies (IgG and IgM) of 25-mer oligopeptide (OP25) corresponding to MBP were identified using reversed-phase and thin-layer chromatographies and MALDI mass spectrometry. It was found that amino acid sequences of OP25 and other oligopeptides hydrolyzed by anti-MBP abzymes were partially homologous to some fragments of the full sequence of IN. Sequences of IN oligopeptides cleavable by anti-IN abzymes were homologous to some fragments of MBP, but anti-MBP abzymes could not effectively hydrolyze OPs corresponding to IN. The common features of the cleavage sites of OP25 and other oligopeptides hydrolyzed by anti-MBP and anti-IN abzymes were revealed. The literature data on hydrolysis of specific and nonspecific proteins and oligopeptides by abzymes against different protein antigens were analyzed. Overall, the literature data suggest that short OPs, including OP25, mainly interact with light chains of polyclonal ABs, which had lower affinity and specificity to the substrate than intact ABs. However, it seems that anti-IN ABs are the only one example of abzymes capable of hydrolyzing various oligopeptides with high efficiency (within some hours but not days). Possible reasons for the efficient hydrolysis of foreign oligopeptides by anti-IN abzymes from HIV-infected patients are discussed.
    Biochemistry (Moscow) 02/2015; 80(2):180-201. DOI:10.1134/S0006297915020054 · 1.30 Impact Factor


119 Reads
Available from