Two CheW coupling proteins are essential in a chemosensory pathway of Borrelia burgdorferi

Department of Oral Biology, the State University of New York at Buffalo, Buffalo, NY 14214, USA.
Molecular Microbiology (Impact Factor: 4.42). 07/2012; 85(4):782-94. DOI: 10.1111/j.1365-2958.2012.08139.x
Source: PubMed


In the model organism Escherichia coli, the coupling protein CheW, which bridges the chemoreceptors and histidine kinase CheA, is essential for chemotaxis. Unlike the situation in E. coli, Borrelia burgdorferi, the causative agent of Lyme disease, has three cheW homologues (cheW(1) , cheW(2) and cheW(3) ). Here, a comprehensive approach is utilized to investigate the roles of the three cheWs in chemotaxis of B. burgdorferi. First, genetic studies indicated that both the cheW(1) and cheW(3) genes are essential for chemotaxis, as the mutants had altered swimming behaviours and were non-chemotactic. Second, immunofluorescence and cryo-electron tomography studies suggested that both CheW(1) and CheW(3) are involved in the assembly of chemoreceptor arrays at the cell poles. In contrast to cheW(1) and cheW(3) , cheW(2) is dispensable for chemotaxis and assembly of the chemoreceptor arrays. Finally, immunoprecipitation studies demonstrated that the three CheWs interact with different CheAs: CheW(1) and CheW(3) interact with CheA(2) whereas CheW(2) binds to CheA(1) . Collectively, our results indicate that CheW(1) and CheW(3) are incorporated into one chemosensory pathway that is essential for B. burgdorferi chemotaxis. Although many bacteria have more than one homologue of CheW, to our knowledge, this report provides the first experimental evidence that two CheW proteins coexist in one chemosensory pathway and that both are essential for chemotaxis.

Download full-text


Available from: Chunhao Li,
1 Follower
15 Reads
  • Source
    • "Bb contains the most redundant set of chemotaxis-related genes found among eubacteria.18 Once inside an animal host, Bb uses chemoreceptor arrays at its cell poles to follow chemoattractant trails to reach specific host cells or tissue compartments.59,60 Sze et al61 have shown that when Bb becomes nonchemotactic to attractants, it abrogates infectivity even when the host is immunodeficient. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Is chronic illness in patients with Lyme disease caused by persistent infection? Three decades of basic and clinical research have yet to produce a definitive answer to this question. This review describes known and suspected mechanisms by which spirochetes of the Borrelia genus evade host immune defenses and survive antibiotic challenge. Accumulating evidence indicates that Lyme disease spirochetes are adapted to persist in immune competent hosts, and that they are able to remain infective despite aggressive antibiotic challenge. Advancing understanding of the survival mechanisms of the Lyme disease spirochete carry noteworthy implications for ongoing research and clinical practice.
    International Journal of General Medicine 04/2013; 6:291-306. DOI:10.2147/IJGM.S44114
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Homology models of the E. coli and T. maritima chemotaxis protein CheW were constructed to assess the quality of structural predictions and their applicability in chemotaxis research: i) a model of E. coli CheW was constructed using the T. maritima CheW NMR structure as a template, and ii) a model of T. maritima CheW was constructed using the E. coli CheW NMR structure as a template. The conformational space accessible to the homology models and to the NMR structures was investigated using molecular dynamics and Monte Carlo simulations. The results show that even though static homology models of CheW may be partially structurally different from their corresponding experimentally determined structures, the conformational space they can access through their dynamic variations can be similar, for specific regions of the protein, to that of the experimental NMR structures. When CheW homology models are allowed to explore their local accessible conformational space, modeling can provide a rational path to predicting CheW interactions with the MCP and CheA proteins of the chemotaxis complex. Homology models of CheW (and potentially, of other chemotaxis proteins) should be seen as snapshots of an otherwise larger ensemble of accessible conformational space.
    PLoS ONE 08/2013; 8(8):e70705. DOI:10.1371/journal.pone.0070705 · 3.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Borrelia burgdorferi, the vector-borne bacterium that causes Lyme disease, was first identified in 1982. It is known that much of the pathology associated with Lyme borreliosis is due to the spirochete's ability to infect, colonize, disseminate, and survive within the vertebrate host. Early studies aimed at defining the biological contributions of individual genes during infection and transmission were hindered by the lack of adequate tools and techniques for molecular genetic analysis of the spirochete. The development of genetic manipulation techniques, paired with elucidation and annotation of the B. burgdorferi genome sequence, has led to major advancements in our understanding of the virulence factors and the molecular events associated with Lyme disease. Since the dawn of this genetic era of Lyme research, genes required for vector or host adaptation have garnered significant attention and highlighted the central role that these components play in the enzootic cycle of this pathogen. This chapter covers the progress made in the Borrelia field since the application of mutagenesis techniques and how they have allowed researchers to begin ascribing roles to individual genes. Understanding the complex process of adaptation and survival as the spirochete cycles between the tick vector and vertebrate host will lead to the development of more effective diagnostic tools as well as identification of novel therapeutic and vaccine targets. In this chapter, the Borrelia genes are presented in the context of their general biological roles in global gene regulation, motility, cell processes, immune evasion, and colonization/dissemination.
    Advances in applied microbiology 01/2014; 86:41-143. DOI:10.1016/B978-0-12-800262-9.00002-0 · 2.74 Impact Factor
Show more