Article

Comparison of optical and microphysical properties of pure Saharan mineral dust observed with AERONET Sun photometer, Raman lidar, and in situ instruments during SAMUM 2006

Journal of Geophysical Research Atmospheres (Impact Factor: 3.44). 04/2012; 117. DOI: 10.1029/2011JD016825

ABSTRACT 1] The Saharan Mineral Dust Experiment (SAMUM) 2006, Morocco, aimed at the characterization of optical, physical, and radiative properties of Saharan dust. AERONET Sun photometer, several lidars (Raman and high-spectral-resolution instruments), and airborne and ground-based in situ instruments provided us with a comprehensive set of data on particle-shape dependent and particle-shape independent dust properties. We compare 4 measurement days in detail, and we carry out a statistical analysis for some of the inferred data products for the complete measurement period. Particle size distributions and complex refractive indices inferred from the Sun photometer observations and measured in situ aboard a research aircraft show systematic differences. We find differences in the wavelength-dependence of single-scattering albedo, compared to light-scattering computations that use data from SOAP (spectral optical absorption photometer). AERONET data products of particle size distribution, complex refractive index, and axis ratios were used to compute particle extinction-to-backscatter (lidar) ratios and linear particle depolarization ratios. We find differences for these parameters to lidar measurements of lidar ratio and particle depolarization ratio. Differences particularly exist at 355 nm, which may be the result of differences of the wavelength-dependent complex refractive index that is inferred by the methods employed in this field campaign. We discuss various error sources that may lead to the observed differences. Citation: Müller, D., et al. (2012), Comparison of optical and microphysical properties of pure Saharan mineral dust observed with AERONET Sun photometer, Raman lidar, and in situ instruments during SAMUM

Download full-text

Full-text

Available from: Detlef Müller, Sep 04, 2015
0 Followers
 · 
111 Views
 · 
37 Downloads
  • Source
    • "More recently, size distributions from in situ aircraft sampling during the SAMUM-1 and Fennec 2011 campaign showed a significant discrepancy in comparison with AERONET for larger particles (i.e. diameters >6 lm), with the inversions tending towards finer distributions compared to the aircraft samples (Muller et al., 2012; Ryder et al., 2013a,b). 3.3.2. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The global cycle of desert dust aerosols responds strongly to climate and human perturbations, and, in turn, impacts climate and biogeochemistry. Here we focus on desert dust size distributions, how these are characterized, emitted from the surface, evolve in the atmosphere, and impact climate and biogeochemistry. Observations, theory and global model results are synthesized to highlight the evolution and impact of dust sizes. Individual particles sizes are, to a large extent, set by the soil properties and the mobilization process. The lifetime of different particle sizes controls the evolution of the size distribution as the particles move downwind, as larger particles fall out more quickly. The dust size distribution strongly controls the radiative impact of the aerosols, as well as their interactions with clouds. The size of particles controls how far downwind they travel, and thus their ability to impact biogeochemistry downwind of the source region.
    Aeolian Research 11/2013; 15. DOI:10.1016/j.aeolia.2013.09.002 · 2.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Infrared Atmospheric Sounder Interferometer (IASI) observations covering the period from July 2007 to December 2011 are interpreted in terms of monthly mean, 1°×1°, 10 μm dust Aerosol Optical Depth (AOD), mean altitude and coarse mode effective radius. The geographical study area includes the northern tropical Atlantic and the north-west Arabian Sea, both characterized by strong, regular dust events. The method developed relies on the construction of Look-Up-Tables computed for a large selection of atmospheric situations and observing conditions. At regional scale, a good agreement is found between IASI-retrieved 10 μm AOD and total visible optical depth at 550 nm from either the Moderate resolution Imaging Spectroradiometer (MODIS/Aqua or Terra), or the Multi-angle Imaging SpectroRadiometer (MISR), or the Polarization and Anisotropy of Reflectances for Atmospheric Science coupled with Observations from a Lidar (PARASOL). Taking into account the ratio existing between infrared and visible AODs, the diversity between the different 550 nm AODs is similar to the difference between these and the IASI AODs. The infrared AOD to visible AOD ratio, partly reflecting the varying distribution of the dust layer between the dust coarse mode particles seen by IASI, and the fine mode seen by the other instruments, is found to vary with the region observed with values close to already published values. Comparisons between the climatologies of the 10 μm IASI AOD and of the PARASOL non-spherical coarse mode AOD at 865 nm, both expected to be representative of the dust coarse mode, lead to conclusions differing according to the region considered. These differences are discussed in the light of the MODIS Angström exponent (865-550 nm). At local scale, around six Aerosol Robotic Network (AERONET) sites, close or far from the dust sources, a similar satisfactory agreement is found between IASI and the visible AODs and the differences between these products are shown and analysed. IASI-retrieved dust layer mean altitudes also compare well with the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP/CALIPSO) aerosol mean layer altitude, both in terms of climatology and of zonal evolution throughout the Atlantic. Comparisons between the IASI-retrieved dust coarse mode effective radius and retrievals from AERONET at the six sites brings into evidence an almost systematic bias of about + 0.35 (IASI-AERONET). Removing this bias leads to a satisfactory agreement between the climatologies of these two products. Overall, these results illustrate the dust westward transport characterized by a fast decrease of the dust optical depth, a somewhat slower decrease of the altitude, and an effective radius remaining almost constant during summer throughout the northern tropical Atlantic. They also demonstrate the capability of high resolution infrared sounders to contribute improving our understanding of processes related to the aerosols (transport, sources, cycles, effect of aerosols on the terrestrial radiation, etc.).
    Atmospheric Chemistry and Physics 09/2012; 12(9):23093-23133. DOI:10.5194/acpd-12-23093-2012 · 4.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this work, a novel technique is used to estimate the aerosol complex index of refraction of in situ collected samples. Samples of atmospheric particulate matter were collected in El Arenosillo, southern Spain, on polycarbonate filters during summer 2004 as part of an aerosol characterization campaign. These samples were analyzed for the volumetric absorption coefficient in the 320-800 nm spectral region and an estimation of the effective imaginary refractive index was made. The values of the imaginary part of the complex refractive index ranged between 0.0009-0.0215 at 800 nm and 0.0015-0.0114 at 320 nm. Little dependence on the wavelength was observed. Several intense and long lasting desert outbreaks were registered during the campaign and the complex refractive index almost doubles its value during these dust events. Finally, we present a comparison of data obtained in situ with columnar data obtained from the AERONET network. A correlation factor of 0.64 was obtained between both data, which gives an idea of how accurately the in situ ground data represent the total column.
    Journal of Environmental Management 09/2012; 111:267-71. DOI:10.1016/j.jenvman.2012.07.027 · 3.19 Impact Factor
Show more