Article

Comparison of optical and microphysical properties of pure Saharan mineral dust observed with AERONET Sun photometer, Raman lidar, and in situ instruments during SAMUM 2006

Journal of Geophysical Research Atmospheres (Impact Factor: 3.44). 04/2012; 117. DOI: 10.1029/2011JD016825

ABSTRACT 1] The Saharan Mineral Dust Experiment (SAMUM) 2006, Morocco, aimed at the characterization of optical, physical, and radiative properties of Saharan dust. AERONET Sun photometer, several lidars (Raman and high-spectral-resolution instruments), and airborne and ground-based in situ instruments provided us with a comprehensive set of data on particle-shape dependent and particle-shape independent dust properties. We compare 4 measurement days in detail, and we carry out a statistical analysis for some of the inferred data products for the complete measurement period. Particle size distributions and complex refractive indices inferred from the Sun photometer observations and measured in situ aboard a research aircraft show systematic differences. We find differences in the wavelength-dependence of single-scattering albedo, compared to light-scattering computations that use data from SOAP (spectral optical absorption photometer). AERONET data products of particle size distribution, complex refractive index, and axis ratios were used to compute particle extinction-to-backscatter (lidar) ratios and linear particle depolarization ratios. We find differences for these parameters to lidar measurements of lidar ratio and particle depolarization ratio. Differences particularly exist at 355 nm, which may be the result of differences of the wavelength-dependent complex refractive index that is inferred by the methods employed in this field campaign. We discuss various error sources that may lead to the observed differences. Citation: Müller, D., et al. (2012), Comparison of optical and microphysical properties of pure Saharan mineral dust observed with AERONET Sun photometer, Raman lidar, and in situ instruments during SAMUM

0 Bookmarks
 · 
91 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: [1] Compared to typical values of 50–60 sr of the extinction-to-backscatter ratio (lidar ratio) at 532 nm of western Saharan mineral dust, low dust lidar ratios from 33.7±6.7 to 39.1±5.1 sr were derived from polarization lidar observations at Limassol, Cyprus (34°N, 33°E) during an outbreak of Arabian dust mainly from Syria in September 2011, indicated by particle linear depolarization ratios up to 28%–35%. The applied new polarization-lidar/photometer method for the extraction of the dust-related lidar-ratio information from the lidar data is outlined, and the results of the dust outbreak which lasted over several days are discussed. The results confirm an Aerosol Robotic Network photometer study on Arabian dust lidar ratios.
    Geophysical Research Letters. 09/2013; 40(17).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mineral dust aerosols exert a significant effect on both solar and terrestrial radiation. By absorbing and scattering, the solar radiation aerosols reduce the amount of energy reaching the surface. In addition, aerosols enhance the greenhouse effect by absorbing and emitting outgoing longwave radiation. Desert dust forcing exhibits large regional and temporal variability due to its short lifetime and diverse optical properties, further complicating the quantification of the direct radiative effect (DRE). The complexity of the links and feedbacks of dust on radiative transfer indicate the need for an integrated approach in order to examine these impacts. In order to examine these feedbacks, the SKIRON limited area model has been upgraded to include the RRTMG (Rapid Radiative Transfer Model - GCM) radiative transfer model that takes into consideration the aerosol radiative effects. It was run for a 6 year period. Two sets of simulations were performed, one without the effects of dust and the other including the radiative feedback. The results were first evaluated using aerosol optical depth data to examine the capabilities of the system in describing the desert dust cycle. Then the aerosol feedback on radiative transfer was quantified and the links between dust and radiation were studied. The study has revealed a strong interaction between dust particles and solar and terrestrial radiation, with several implications on the energy budget of the atmosphere. A profound effect is the increased absorption (in the shortwave and longwave) in the lower troposphere and the induced modification of the atmospheric temperature profile. These feedbacks depend strongly on the spatial distribution of dust and have more profound effects where the number of particles is greater, such as near their source.
    ATMOSPHERIC CHEMISTRY AND PHYSICS 06/2013; 13(11):5489-5504. · 5.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The global cycle of desert dust aerosols responds strongly to climate and human perturbations, and, in turn, impacts climate and biogeochemistry. Here we focus on desert dust size distributions, how these are characterized, emitted from the surface, evolve in the atmosphere, and impact climate and biogeochemistry. Observations, theory and global model results are synthesized to highlight the evolution and impact of dust sizes. Individual particles sizes are, to a large extent, set by the soil properties and the mobilization process. The lifetime of different particle sizes controls the evolution of the size distribution as the particles move downwind, as larger particles fall out more quickly. The dust size distribution strongly controls the radiative impact of the aerosols, as well as their interactions with clouds. The size of particles controls how far downwind they travel, and thus their ability to impact biogeochemistry downwind of the source region.
    Aeolian Research 11/2013; · 2.84 Impact Factor

Full-text

Download
26 Downloads
Available from
Jun 4, 2014