Variation in surface air temperature of China during the 20th century

Journal of Atmospheric and Solar-Terrestrial Physics (Impact Factor: 1.42). 01/2011; 73:2331-2344. DOI: 10.1016/j.jastp.2011.07.007

ABSTRACT The 20th century surface air temperature (SAT) records of China from various sources are analyzed using data which include the recently released Twentieth Century Reanalysis Project dataset. Two key features of the Chinese records are confirmed: (1) significant 1920s and 1940s warming in the temperature records, and (2) evidence for a persistent multidecadal modulation of the Chinese surface temperature records in co-variations with both incoming solar radiation at the top of the atmosphere as well as the modulated solar radiation reaching ground surface. New evidence is presented for this Sun-climate link for the instrumental record from 1880 to 2002. Additionally, two non-local physical aspects of solar radiation-induced modulation of the Chinese SAT record are documented and discussed. Teleconnections that provide a persistent and systematic modulation of the temperature response of the Tibetan Plateau and/or the tropospheric air column above the Eurasian continent (e.g., 30 degrees N-70 degrees N; 0 degrees-120 degrees E) are described. These teleconnections may originate from the solar irradiance-Arctic-North Atlantic overturning circulation mechanism proposed by Soon (2009). Also considered is the modulation of large-scale land-sea thermal contrasts both in terms of meridional and zonal gradients between the subtropical western Pacific and mid-latitude North Pacific and the continental landmass of China. The Circum-global teleconnection (CGT) pattern of summer circulation of Ding and Wang (2005) provides a physical framework for study of the Sun-climate connection over East Asia. Our results highlight the importance of solar radiation reaching the ground and the concomitant importance of changes in atmospheric transparency or cloudiness or both in motivating a true physical explanation of any Sun-climate connection. We conclude that ground surface solar radiation is an important modulating factor for Chinese SAT changes on multidecadal to centennial timescales. Therefore, a comprehensive view of local and remote factors of climate change in China must take account of this as well as other natural and anthropogenic forcings. (C) 2011 Elsevier Ltd. All rights reserved.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tropospheric ozone (O3T) is a secondary pollutant whose formation involved primarily solar radiation, NOx and volatile organic compounds. The North of the Buenos Aires Province has great agricultural-industrial activity; therefore, O3T study is an important issue in the area. In this paper, we present the first results tend to estimate and characterize O3T in San Nicol\'as de los Arroyos, North of Buenos Aires. Due to a lack of in situ data, we analyse the observations of the instrument OMI (Ozone Monitoring Instrument) of land remote sensing satellite AURA (GSFC/NASA). The data cover the years 2004-2013. Applying the multitaper technique (MTM), very suitable for short and noisy data series, spectral analysis is performed on a grid corresponding 1{\deg} in latitude by 1.5{\deg} in longitude, centred South of the Province of Santa Fe. The most remarkable result is the emergence of a significant peak (95%) of four months cycle. To test the validity of this signal in San Nicol\'as, daily solar radiation data (Q) were analysed in the area. The application of MTM to the daily values of Q, yields a spectral peak of 120 days. It is concluded that atmospheric opacity on the site has four months variations that modify the solar radiation at the troposphere, and consequently, the production rate of O3T. Evidence that these variations are due to teleconnection process originated in the Maritime Continent are presented.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Global surface temperature records (e.g. HadCRUT4) since 1850 are characterized by climatic oscillations synchronous with specific solar, planetary and lunar harmonics superimposed on a background warming modulation. The latter is related to a long millennial solar oscillation and to changes in the chemical composition of the atmosphere (e.g. aerosol and greenhouse gases). However, current general circulation climate models, e.g. the CMIP5 GCMs, to be used in the AR5 IPCC Report in 2013, fail to reconstruct the observed climatic oscillations. As an alternate, an empirical model is proposed that uses: (1) a specific set of decadal, multidecadal, secular and millennial astronomic harmonics to simulate the observed climatic oscillations; (2) a 0.45 attenuation of the GCM ensemble mean simulations to model the anthropogenic and volcano forcing effects. The proposed empirical model outperforms the GCMs by better hind-casting the observed 1850-2012 climatic patterns. It is found that: (1) about 50-60% of the warming observed since 1850 and since 1970 was induced by natural oscillations likely resulting from harmonic astronomical forcings that are not yet included in the GCMs; (2) a 2000-2040 approximately steady projected temperature; (3) a 2000-2100 projected warming ranging between 0.3 $^{o}C$ and 1.6 $^{o}C$, which is significantly lower than the IPCC GCM ensemble mean projected warming of 1.1 $^{o}C$ to 4.1 $^{o}C$; ; (4) an equilibrium climate sensitivity to $CO_{2}$ doubling centered in 1.35 $^{o}C$ and varying between 0.9 $^{o}C$ and 2.0 $^{o}C$.
    Energy & Environment 07/2013; 24(3&4):455-496. · 0.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Power spectra of global surface temperature (GST) records reveal major periodicities at about 9.1, 10-11, 19-22 and 59-62 years. The Coupled Model Intercomparison Project 5 (CMIP5) general circulation models (GCMs), to be used in the IPCC (2013), are analyzed and found not able to reconstruct this variability. From 2000 to 2013.5 a GST plateau is observed while the GCMs predicted a warming rate of about 2 K/century. In contrast, the hypothesis that the climate is regulated by specific natural oscillations more accurately fits the GST records at multiple time scales. The climate sensitivity to CO2 doubling should be reduced by half, e.g. from the IPCC-2007 2.0-4.5 K range to 1.0-2.3 K with 1.5 C median. Also modern paleoclimatic temperature reconstructions yield the same conclusion. The observed natural oscillations could be driven by astronomical forcings. Herein I propose a semi empirical climate model made of six specific astronomical oscillations as constructors of the natural climate variability spanning from the decadal to the millennial scales plus a 50% attenuated radiative warming component deduced from the GCM mean simulation as a measure of the anthropogenic and volcano contributions to climatic changes. The semi empirical model reconstructs the 1850-2013 GST patterns significantly better than any CMIP5 GCM simulation. The model projects a possible 2000-2100 average warming ranging from about 0.3 C to 1.8 C that is significantly below the original CMIP5 GCM ensemble mean range (1 K to 4 K).
    Earth-Science Reviews 10/2013; 126:321-357. · 7.34 Impact Factor

Koushik Dutta