Article

Dynamic simulation of a PEM fuel cell system

Dept. of Elec. and Electr. Eng., Eng. and Arch. Fac, Dicle University, Diyarbakır, TÜRKĐYE; Dept. of Elec. and Electronics Eng, Engineering Fac, Firat University, Elazığ, TÜRKĐYE
08/2007;

ABSTRACT In the near future, some fuel cell systems could be an accessible and attractive alternative to conventional electricity generation and vehicle drives. The polymer electrolyte membrane (interchangeably called proton exchange membrane, PEM) fuel cell systems can be made in mW to kW capacities; hence a wide range of applications can be covered by this type of fuel cell. This is a major advantage of this type of fuel cell, because once the technology was developed it can be more or less easily scaled up or down for various applications. PEM fuel cell has attracted a great deal of attention as a potential power source for automobile and stationary applications due to its low temperature of operation, high power density and high energy conversion efficiency. Great progress has been made over the past twenty years in the development of PEM fuel cell technology. However, there are still several technical challenges that need to be addressed before commercialization of PEM fuel cell. In this study, the dynamics of a polymer electrolyte membrane fuel cell system is modelled, simulated and presented. Matlab –Simulink TM is used for the modeling and simulation of the fuel cell system. The fuel cell system model consists of the dynamics of reactant flow, fuel cell model and power conditioning units. Also, characteristic of 1.2 W PEM fuel cell system is obtained by experiments. Simulation and experimental results are presented in this paper. The analyses of grid connected or stand alone applications of PEM fuel cell generator system can be achieved with this dynamic simulation model.

2 Bookmarks
 · 
154 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nonlinearity and time-varying dynamics of fuel cell (FC) systems make it complex to design a controller for improving the output performance. This paper introduces an application of model reference adaptive control to a low power proton exchange membrane (PEM) FC system, which consists of three main components: a FC stack, an air pump to supply air, and a solenoid valve to adjust hydrogen flow. From the system perspective, the dynamic model of PEMFC can be expressed as a multivariable configuration of two inputs, hydrogen and air flow rates, and two outputs, cell voltage and current. The corresponding transfer function can be identified off-line to describe the linearized dynamics with a finite order at a certain operating point, and is written in a discrete-time auto-regression moving-average model for on-line estimation of parameters. This provides a basis of adaptive control strategy to improve the FC performance in terms of efficiency, transient and steady-state specifications. Experiments show that the proposed adaptive controller is robust to the variation of FC system dynamics and power request.
    Decision and Control, 2007 46th IEEE Conference on; 01/2008
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nonlinearity and the time-varying dynamics of fuel cell systems make it complex to design a controller for improving output performance. This paper introduces an application of a model reference adaptive control to a low-power proton exchange membrane (PEM) fuel cell system, which consists of three main components: a fuel cell stack, an air pump to supply air, and a solenoid valve to adjust hydrogen flow. From the system perspective, the dynamic model of the PEM fuel cell stack can be expressed as a multivariable configuration of two inputs, hydrogen and air-flow rates, and two outputs, cell voltage and current. The corresponding transfer functions can be identified off-line to describe the linearized dynamics with a finite order at a certain operating point, and are written in a discrete-time auto-regressive moving-average model for on-line estimation of parameters. This provides a strategy of regulating the voltage and current of the fuel cell by adaptively adjusting the flow rates of air and hydrogen. Experiments show that the proposed adaptive controller is robust to the variation of fuel cell system dynamics and power request. Additionally, it helps decrease fuel consumption and relieves the DC/DC converter in regulating the fluctuating cell voltage.
    Journal of Power Sources. 01/2008;

Full-text (2 Sources)

View
592 Downloads
Available from
Jun 2, 2014