Article

Shear-thinning effects in annular-orifice viscous fluid dampers

Journal of the Chinese Institute of Engineers 01/2007; 30:275-287.

ABSTRACT The number of construction projects using viscous fluid dampers for the purpose of seismic energy dissipation has been increasing in recent years. Usually, resisting forces provided by a viscous fluid damper are nonlinearly related to the damper op-eration velocity. In the current study, the mechanism of the nonlinear behavior is studied. It is found that the fluid shear rate in the orifices of a damper is high enough to cause shear thinning of the fluid, that is, the non-Newtonian behavior of the fluid must be considered to capture the viscous damper's non-linearity. Carreau's equation giving the shear-thinning relationship between fluid viscosity and shear rate is em-ployed in a finite element model. The model is used to calculate the fluid dynamics in viscous dampers and the calculated results successfully explain the nonlinear behavior. Effects of the damper geometry and the fluid viscosity on the damper non-linearity are also tested and discussed. Again, the trend shown in experimental results can be fully explained by the shear-thinning concept. In addition, the behavior of a damper operated at ultra high velocity is addressed.

1 Bookmark
 · 
204 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Viscous fluid dampers have been used in many building and bridge construction projects for earthquake damage mitigation. Previous study has shown that silicone oil properties, such as the fluid shear-thinning and relaxation effects, play important roles for the annular-orificed fluid damper behavior, and the Navier-Stokes equations based on these mechanisms were developed. In the current study, attempts are made to explain the effects of frequency, damper dimensions, and viscosity of silicone oil on the damper stiffness behavior using the developed equations. It is found that the developed equations successfully explain the observed phenomena. To avoid the complicated fluid dynamics analyses for damper parameters, such as the damping factor and the velocity power exponent, a new four-parameter equation considering both the fluid shear-thinning and stiffness effects, with a form similar to the widely used two- or three-parameter equation is proposed. The results of the new model successfully capture the damper behavior both at low and high frequencies and show an advantage that better consistent results can be obtained in the velocity range for the building and bridge applications.
    Archive of Applied Mechanics 01/2012; · 1.44 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this paper, the design of a new viscous damper is presented and its mechanical characteristics are investigated experimentally. The motion equation of a system consisting of a drop machine and the damper is set up. By numerically simulating this equation, the curve of the damper cavity generatrix is obtained on the assumption that the resisting force is constant. Then the new damper with big capacity and high-energy dissipation rate is designed. Drop tests using this damper and a Pro225-damper bought in the market are performed, respectively. On one hand, the experimental resisting forces of the new damper approximate constants, which illustrates that the simulation is viable. On the other hand, some advantages of the new damper over the Pro225-damper are found.
    Archive of Applied Mechanics 02/2009; 79(3):279-286. · 1.44 Impact Factor

Full-text

View
6 Downloads
Available from