Preparation and characterization of nanocomposite based on polyaniline and graphene nanosheets

Department of Chemistry, Hanyang University, 133-791, Seoul, Korea; Division of Advanced Materials Science Engineering, Hanyang University, 133-791, Seoul, Korea; Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), Caugiay, Hanoi, Vietnam; Department of Environmental Health, Seonam University, 590-711, Namwon, Korea
Macromolecular Research (Impact Factor: 1.64). 07/2011; 19:203-208. DOI: 10.1007/s13233-011-0216-2

ABSTRACT Polymer nanocomposites based on polyaniline (PANi) and graphene nanosheets (GNS) modified with poly(sodium 4-styrensulfonate) (PSS-GNS) were prepared, and their structure and properties were investigated by atomic force microscopy (AFM), scanning electron microscopy (SEM), UV-vis spectroscopy, ATR-IR spectros-copy, X-ray diffraction, elemental analysis, thermogravimetric analysis (TGA) and electrical conductivity measure-ments. The results revealed that for the PANi/PSS-GNS nanocomposites, the disordered structure of PSS-GNS was fully destroyed and PSS-GNS exists in the form of a single GNS or stacked PSS-GNS elements in a PANi matrix. PSS-GNS was partly covered by PANi due to hydrogen bonding that occurs between the PSS-GNS and PANi. By incorporating PSS-GNS, the electrical conductivity of PANi increased linearly from 0.84 S/cm for neat PANi to 4.96 S/cm for a PANi/PSS-GNS (5%) nanocomposite. The thermal stability of the PANi was also improved significantly to approximately 100 o C by the nanocomposite.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Graphene oxide/copolyaniline (GO/NCOPA) composites were prepared with GO, which was prepared using a modified Hummers method and a monomer mixture containing aniline and ionic sodium diphenylamine sulfonate, where ionic N-substituted copolyaniline was synthesized by chemical oxidation. The GO/NCOPA composite, as a dry-base electrorheological (ER) fluid system, was dispersed in silicone oil. With the ionic substituent on the polymer chain, the composite showed both controllable electrical conductivity and higher polarization, which provide favorable factors for ER applications. The GO/NCOPA composite-based ER fluid containing a copolymer with an ionic group exhibited typical ER characteristics, as measured using a rotational rheometer equipped with a Couette-type cylinder and a high voltage generator. The dielectric spectra measure was correlated further with their ER performance.
    Colloid and Polymer Science 291(6). · 2.16 Impact Factor

Full-text (3 Sources)

Available from
Aug 17, 2014