Quantifying multi-ethnic representation in genetic studies of high mortality diseases

Division of Systems Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA.
AMIA Summits on Translational Science proceedings AMIA Summit on Translational Science 03/2012; 2012:11-8.
Source: PubMed


Most GWASs were performed using study populations with Caucasian ethnicity or ancestry, and findings from one ethnic subpopulation might not always translate to another. We curated 4,573 genetic studies on 763 human diseases and identified 3,461 disease-susceptible SNPs with genome-wide significance; only 10% of these had been validated in at least two different ethnic populations. SNPs for autoimmune diseases demonstrated the lowest percentage of cross-ethnicity validation. We used the mortality data from the Center for Disease Control and Prevention and identified 19 diseases killing over 10,000 Americans per year that were still lacking publications of even a single cross-ethnic SNP. Fifteen of these diseases had never been studied in large GWAS in non-Caucasian populations, including chronic liver diseases and cirrhosis, leukemia, and non-Hodgkin's lymphoma. Our results demonstrate that diseases killing most Americans are still lacking genetic studies across ethnicities.

13 Reads
  • Nature 07/2011; 475(7355):163-5. DOI:10.1038/475163a · 41.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genome-wide association (GWA) using large numbers of single nucleotide polymorphisms (SNPs) is now a powerful, state-of-the-art approach to mapping human disease genes. When a GWA study detects association between a SNP and the disease, this signal usually represents association with a set of several highly correlated SNPs in strong linkage disequilibrium. The challenge we address is to distinguish among these correlated loci to highlight potential functional variants and prioritize them for follow-up. We implemented a systematic method for testing association across diverse population samples having differing histories and LD patterns, using a logistic regression framework. The hypothesis is that important underlying biological mechanisms are shared across human populations, and we can filter correlated variants by testing for heterogeneity of genetic effects in different population samples. This approach formalizes the descriptive comparison of p-values that has typified similar cross-population fine-mapping studies to date. We applied this method to correlated SNPs in the cholinergic nicotinic receptor gene cluster CHRNA5-CHRNA3-CHRNB4, in a case-control study of cocaine dependence composed of 504 European-American and 583 African-American samples. Of the 10 SNPs genotyped in the r2 > or = 0.8 bin for rs16969968, three demonstrated significant cross-population heterogeneity and are filtered from priority follow-up; the remaining SNPs include rs16969968 (heterogeneity p = 0.75). Though the power to filter out rs16969968 is reduced due to the difference in allele frequency in the two groups, the results nevertheless focus attention on a smaller group of SNPs that includes the non-synonymous SNP rs16969968, which retains a similar effect size (odds ratio) across both population samples. Filtering out SNPs that demonstrate cross-population heterogeneity enriches for variants more likely to be important and causative. Our approach provides an important and effective tool to help interpret results from the many GWA studies now underway.
    BMC Genetics 09/2008; 9(1):58. DOI:10.1186/1471-2156-9-58 · 2.40 Impact Factor
  • Source
    The Lancet 11/2009; 375(9725):1525-1535. · 45.22 Impact Factor
Show more

Preview (3 Sources)

13 Reads
Available from