Thymidine Kinase 1 Upregulation Is an Early Event in Breast Tumor Formation

Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA.
Journal of Oncology 06/2012; 2012(4 a):575647. DOI: 10.1155/2012/575647
Source: PubMed


Prognostic markers play an important role in our understanding of tumors and how to treat them. Thymidine kinase 1 (TK1), a proliferation marker involved in DNA repair, has been shown to have independent prognostic potential. This prognostic potential includes the novel concept that upregulation of serum TK1 levels is an early event in cancer development. This same effect may also be seen in tumor tissue. In order to demonstrate that TK1 upregulation is an early event in tumor tissue formation, tissue arrays were obtained and stained for TK1 by immunohistochemistry. Using a progressive breast tissue array, precancerous tissue including breast adenosis, simple hyperplasia, and atypical hyperplasia stained positive for TK1 expression. Different stages of breast carcinoma tissue also stained positive for TK1 including nonspecific infiltrating duct, infiltrating lobular, and infiltrating duct with lymph node metastasis carcinomas. This indicates that TK1 upregulation is an early event in breast carcinoma development, and may be useful in identifying precancerous tissue. Further work is needed to better understand the differences seen between TK1 positive and negative tissues.

Download full-text


Available from: Richard A Robison,
  • [Show abstract] [Hide abstract]
    ABSTRACT: Thymidine kinase 1 (TK1) is an enzyme involved in nucleic acid synthesis and is therefore considered to be an important tumor proliferation marker. The aim of the present study was to determine the diagnostic role of TK1 measurement in cancer. An extensive electronic search was performed in PubMed, EMBASE and the Cochrane Library using the keywords 'thymidine kinase 1' and 'tumor' and synonyms. This study was conducted as part of a project to establish evidence-based guidelines for the diagnosis and treatment of cancer. A total of 453 abstracts were screened, after which the full text of 40 studies were selected for further investigation, including screening of the references cited by studies in the original search. Fifteen studies were enrolled following full-text evaluation. The areas under the receiver operating characteristic curves for the radioenzymatic assay (REA), the chemiluminescence immunoassay (CLIA) and the total were 0.88, 0.75 and 0.8, respectively. These results were all between <0.9 and >0.7, which suggested a moderate diagnostic efficacy. The positive likelihood ratio of the CLIA method was the highest (10.229), which demonstrated that CLIA exhibited a satisfactory specificity in tumor diagnosis. However, TK1 as a single diagnostic tumor marker was not of significant value and the combination of more tumor markers in the diagnosis of tumors may be preferable.
    07/2013; 1(4):629-637. DOI:10.3892/br.2013.114
  • [Show abstract] [Hide abstract]
    ABSTRACT: Many viruses have documented oncolytic activity, with the first evidence observed clinically over a decade ago. In recent years, there has been a resurgence of interest in the field of oncolytic viruses. Viruses may be innately oncotropic, lacking the ability to cause disease in people or they may require engineering to allow selective tumor targeting and attenuation of pathogenicity. Following infection of a neoplastic cell, several events may occur, including direct viral oncolysis, apoptosis, necrotic cell death and autophagic cellular demise. Of late, a large body of work has recognized the ability of oncolytic viruses (OVs) to activate the innate and adaptive immune system, as well as directly killing tumors. The production of viruses expressing transgenes encoding for cytokines, colony-stimulating factors, costimulatory molecules and tumor-associated antigens has been able to further incite immune responses against target tumors. Multiple OVs are now in the advanced stages of clinical trials, with several individual viruses having completed their respective trials with positive results. This review introduces the multiple mechanisms by which OVs are able to act as an antineoplastic therapy, either on their own or in combination with other more traditional treatment modalities. The full benefit and the place where OVs will be integrated into standard-of-care therapies will be determined with ongoing studies ranging from the laboratory to the patient. With various different viruses now in the clinic this therapeutic option is beginning to prove its worth, and the versatility of these agents means further innovative and novel applications will continue to be developed.
    Immunotherapy 11/2013; 5(11):1191-206. DOI:10.2217/imt.13.123 · 2.07 Impact Factor
  • Source

    Journal of Cancer Therapy 11/2014; 5: 1153-1174(13). DOI:10.4236/jct.2014.513118
Show more