Article

Ankyrin-B protein in heart failure: identification of a new component of metazoan cardioprotection.

Dorothy M. Davis Heart and Lung Research Institute, Columbus, OH 43210, USA.
Journal of Biological Chemistry (Impact Factor: 4.6). 07/2012; 287(36):30268-81. DOI: 10.1074/jbc.M112.368415
Source: PubMed

ABSTRACT Ankyrins (ankyrin-R, -B, and -G) are adapter proteins linked with defects in metazoan physiology. Ankyrin-B (encoded by ANK2) loss-of-function mutations are directly associated with human cardiovascular phenotypes including sinus node disease, atrial fibrillation, ventricular tachycardia, and sudden cardiac death. Despite the link between ankyrin-B dysfunction and monogenic disease, there are no data linking ankyrin-B regulation with common forms of human heart failure. Here, we report that ankyrin-B levels are altered in both ischemic and non-ischemic human heart failure. Mechanistically, we demonstrate that cardiac ankyrin-B levels are tightly regulated downstream of reactive oxygen species, intracellular calcium, and the calcium-dependent protease calpain, all hallmarks of human myocardial injury and heart failure. Surprisingly, β(II)-spectrin, previously thought to mediate ankyrin-dependent modulation in the nervous system and heart, is not coordinately regulated with ankyrin-B or its downstream partners. Finally, our data implicate ankyrin-B expression as required for vertebrate myocardial protection as hearts deficient in ankyrin-B show increased cardiac damage and impaired function relative to wild-type mouse hearts following ischemia reperfusion. In summary, our findings provide the data of ankyrin-B regulation in human heart failure, provide insight into candidate pathways for ankyrin-B regulation in acquired human cardiovascular disease, and surprisingly, implicate ankyrin-B as a molecular component for cardioprotection following ischemia.

0 Followers
 · 
208 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cardiomyocyte T tubules are important for regulating ion flux. Bridging integrator 1 (BIN1) is a T-tubule protein associated with calcium channel trafficking that is downregulated in failing hearts. Here we find that cardiac T tubules normally contain dense protective inner membrane folds that are formed by a cardiac isoform of BIN1. In mice with cardiac Bin1 deletion, T-tubule folding is decreased, which does not change overall cardiomyocyte morphology but leads to free diffusion of local extracellular calcium and potassium ions, prolonging action-potential duration and increasing susceptibility to ventricular arrhythmias. We also found that T-tubule inner folds are rescued by expression of the BIN1 isoform BIN1+13+17, which promotes N-WASP-dependent actin polymerization to stabilize the T-tubule membrane at cardiac Z discs. BIN1+13+17 recruits actin to fold the T-tubule membrane, creating a 'fuzzy space' that protectively restricts ion flux. When the amount of the BIN1+13+17 isoform is decreased, as occurs in acquired cardiomyopathy, T-tubule morphology is altered, and arrhythmia can result.
    Nature Medicine 05/2014; 20(6). DOI:10.1038/nm.3543 · 28.05 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cardiac function depends on the highly regulated and coordinate activity of a large ensemble of potassium channels that control myocyte repolarization. While voltage-gated K(+) channels have been well-characterized in heart, much less is known about regulation and/or targeting of two-pore K(+) channel (K2P) family members, despite their potential importance in modulation of heart function.Methods and ResultsHere we report a novel molecular pathway for membrane targeting of TREK-1, a mechano-sensitive K2P channel regulated by environmental and physical factors including membrane stretch, pH, and polyunsaturated fatty acids (e.g. arachidonic acid). We demonstrate that βIV-spectrin, an actin-associated protein, is co-localized with TREK-1 at the myocyte intercalated disc, associates with TREK-1 in heart, and is required for TREK-1 membrane targeting. Mice expressing βIV-spectrin lacking TREK-1 binding (qv(4 J)) display aberrant TREK-1 membrane localization, decreased TREK-1 activity, delayed action potential repolarization, and arrhythmia without apparent defects in localization/function of other cardiac potassium channel subunits. Finally, we report abnormal βIV-spectrin levels in human heart failure. These data provide new insight into membrane targeting of TREK-1 in heart and establish a broader role for βIV-spectrin in organizing functional membrane domains critical for normal heart function.
    Cardiovascular Research 01/2014; DOI:10.1093/cvr/cvu008 · 5.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: NATURE SCIENTIFIC REPORTS 2014. Calstabin2 is a component of the cardiac ryanodine receptor (RyR2) macromolecular complex, which modulates Ca2+ release from the sarcoplasmic reticulum in cardiomyocytes. Previous reports implied that genetic deletion of Calstabin2 leads to phenotypes related to cardiac aging. However, the mechanistic role of Calstabin2 in the process of cardiac aging remains unclear. To assess whether Calstabin2 is involved in age-related heart dysfunction, we studied Calstabin2 knockout (KO) and control wild-type (WT) mice. We found a significant association between deletion of Calstabin2 and cardiac aging. Indeed, aged Calstabin2 KO mice exhibited a markedly impaired cardiac function compared with WT littermates. Calstabin2 deletion resulted also in increased levels of cell cycle inhibitors p16 and p19, augmented cardiac fibrosis, cell death, and shorter telomeres. Eventually, we demonstrated that Calstabin2 deletion resulted in AKT phosphorylation, augmented mTOR activity, and impaired autophagy in the heart. Taken together, our results identify Calstabin2 as a key modulator of cardiac aging and indicate that the activation of the AKT/mTOR pathway plays a mechanistic role in such a process.
    Scientific Reports 12/2014; DOI:10.1038/srep07425 · 5.08 Impact Factor