A mechanistic analysis of the role of microcalcifications in atherosclerotic plaque stability: potential implications for plaque rupture.

Department of Biomedical Engineering, The City College of New York, The City University of New York, New York, New York
AJP Heart and Circulatory Physiology (Impact Factor: 4.01). 07/2012; 303(5):H619-28. DOI: 10.1152/ajpheart.00036.2012
Source: PubMed

ABSTRACT The role of microcalcifications (μCalcs) in the biomechanics of vulnerable plaque rupture is examined. Our laboratory previously proposed (Ref. 44), using a very limited tissue sample, that μCalcs embedded in the fibrous cap proper could significantly increase cap instability. This study has been greatly expanded. Ninety-two human coronary arteries containing 62 fibroatheroma were examined using high-resolution microcomputed tomography at 6.7-μm resolution and undecalcified histology with special emphasis on calcified particles <50 μm in diameter. Our results reveal the presence of thousands of μCalcs, the vast majority in lipid pools where they are not dangerous. However, 81 μCalcs were also observed in the fibrous caps of nine of the fibroatheroma. All 81 of these μCalcs were analyzed using three-dimensional finite-element analysis, and the results were used to develop important new clinical criteria for cap stability. These criteria include variation of the Young's modulus of the μCalc and surrounding tissue, μCalc size, and clustering. We found that local tissue stress could be increased fivefold when μCalcs were closely spaced, and the peak circumferential stress in the thinnest nonruptured cap (66 μm) if no μCalcs were present was only 107 kPa, far less than the proposed minimum rupture threshold of 300 kPa. These results and histology suggest that there are numerous μCalcs < 15 μm in the caps, not visible at 6.7-μm resolution, and that our failure to find any nonruptured caps between 30 and 66 μm is a strong indication that many of these caps contained μCalcs.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Platelets contribute to processes beyond thrombus formation and may play a so far underestimated role as an immune cell in various circumstances. This review outlines immune functions of platelets in host defense, but also how they may contribute to mechanisms of infectious diseases. A particular emphasis is placed on the interaction of platelets with other immune cells. Furthermore, this article outlines the features of atherosclerosis as an inflammatory vascular disease highlighting the role of platelet crosstalk with cellular and soluble factors involved in atheroprogression. Understanding, how platelets influence these processes of vascular remodeling will shed light on their role for tissue homeostasis beyond intravascular thrombosis. Finally, translational implications of platelet-mediated inflammation in atherosclerosis are discussed.
    Frontiers in Immunology 01/2015; 6:98. DOI:10.3389/fimmu.2015.00098
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Calcification is a marked pathological component in carotid artery plaque. Studies have suggested that calcification may induce regions of high stress concentrations therefore increasing the potential for rupture. However, the mechanical behaviour of the plaque under the influence of calcification is not fully understood. A method of accurately characterising the calcification coupled with the associated mechanical plaque properties is needed to better understand the impact of calcification on the mechanical behaviour of the plaque during minimally invasive treatments. This study proposes a comparison of biochemical and structural characterisation methods of the calcification in carotid plaque specimens to identify plaque mechanical behaviour.
    BioMedical Engineering OnLine 01/2015; 14 Suppl 1:S5. DOI:10.1186/1475-925X-14-S1-S5 · 1.75 Impact Factor