Article

Transcriptome analysis of head kidney in grass carp and discovery of immune-related genes.

BMC Veterinary Research (Impact Factor: 1.86). 07/2012; 8(1):108. DOI: 10.1186/1746-6148-8-108
Source: PubMed

ABSTRACT BACKGROUND: Grass carp (Ctenopharyngodon idella) is one of the most economically important freshwater fish, but its production is often affected by diseases that cause serious economic losses. To date, no good breeding varieties have been obtained using the oriented cultivation technique. The ability to identify disease resistance genes in grass carp is important to cultivate disease-resistant varieties of grass carp. RESULTS: In this study, we constructed a non-normalized cDNA library of head kidney in grass carp, and, after clustering and assembly, we obtained 3,027 high-quality unigenes. Solexa sequencing was used to generate sequence tags from the transcriptomes of the head kidney in grass carp before and after grass carp reovirus (GCRV) infection. After processing, we obtained 22,144 tags that were differentially expressed by more than 2-fold between the uninfected and infected groups. 679 of the differentially expressed tags (3.1%) mapped to 483 of the unigenes (16.0%). The up-regulated and down-regulated unigenes were annotated using gene ontology terms; 16 were annotated as immune-related and 42 were of unknown function having no matches to any of the sequences in the databases that were used in the similarity searches. Semi-quantitative RT-PCR revealed four unknown unigenes that showed significant responses to the viral infection. Based on domain structure predictions, one of these sequences was found to encode a protein that contained two transmembrane domains and, therefore, may be a transmembrane protein. Here, we proposed that this novel unigene may encode a virus receptor or a protein that mediates the immune signalling pathway at the cell surface. CONCLUSION: This study enriches the molecular basis data of grass carp and further confirms that, based on fish tissue-specific EST databases, transcriptome analysis is an effective route to discover novel functional genes.

0 Bookmarks
 · 
346 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: De novo transcriptome sequencing is a robust method of predicting miRNA target genes, especially for organisms without reference genomes. Differentially expressed miRNAs had been identified previously in kidney samples collected from susceptible and resistant grass carp (Ctenopharyngodon idella) affected by Aeromonas hydrophila. Target identification for these differentially expressed miRNAs poses a major challenge in this non-model organism. Two cDNA libraries constructed from mRNAs of susceptible and resistant C. idella were sequenced by Illumina Hiseq 2000 technology. A total of more than 100 million reads were generated and de novo assembled into 199,593 transcripts which were further extensively annotated by comparing their sequences to different protein databases. Biochemical pathways were predicted from these transcript sequences. A BLASTx analysis against a non-redundant protein database revealed that 61,373 unigenes coded for 28,311 annotated proteins. Two cDNA libraries from susceptible and resistant samples showed that 721 unigenes were expressed at significantly different levels; 475 were significantly up-regulated and 246 were significantly down-regulated in the SG samples compared to the RG samples. The computational prediction of miRNA targets from these differentially expressed genes identified 188 unigenes as the targets of 5 conserved and 4 putative novel miRNA families. This study demonstrates the feasibility of identifying miRNA targets by transcriptome analysis. The transcriptome assembly data represent a substantial increase in the genomic resources available for C. idella and will provide insights into the gene expression profile analysis and the miRNA function annotations in further studies.
    PLoS ONE 01/2014; 9(11):e112722. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Two cDNAs encoding transglutaminase (TG) were identified in a subtractive cDNA library prepared from the head kidney of poly I:C stimulated Atlantic cod (Gadus morhua). Full-length TG-1 and TG-2 cDNA were cloned from the head kidney by a reverse-transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE). The deduced amino acid (aa) sequence for TG-1 was 695 aa with an estimated molecular mass of 78.3 kDa, while TG-2 was a 698 aa protein with an estimated molecular mass of 78.8 kDa. The two proteins were named TG-1 and TG-2 and both possess transglutaminase/protease-like homologous domains (TGc) and full conservation of amino acids cysteine, histidine, and aspartate residues that form the catalytic triad. Sequence analysis showed high similarity (93.1%) with Alaska pollock TG, and the TGs were grouped together with TGs from chum salmon, Japanese flounder, Nile tilapia, and red seabream in addition to Alaska pollock in phylogenetic analysis. Interestingly, they showed different tissue distribution with highest constitutive expression in reproductive and immunological organs, indicating important roles in these organs. Furthermore, the up-regulation of TG-1 and TG-2 in head kidney after stimulating Atlantic cod with poly I:C suggested a role of TGs in immune response in Atlantic cod.
    Fish &amp Shellfish Immunology 12/2013; · 2.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Interleukin-8 (IL-8) is a CXC chemokine that plays key regulatory roles in the immune and inflammatory responses implicated in many human diseases. In this study, we identified and characterized an IL-8 homologue from the grass carp, Ctenopharyngodon idellus. A sequence alignment of the full-length cDNA and genomic DNA showed that the exon/intron organization of grass carp IL-8 (gcIL-8) is identical to those of other known CXC chemokine genes. A multiple alignment analysis showed that gcIL-8 is an ELR(-)CXC chemokine, and its deduced amino acid sequence shares 81% and 36% identity with common carp IL-8s L1 (GenBank ID: ABE47600) and L2 (GenBank ID: AB470924), respectively, suggesting that it belongs to the lineage 1 group of fish IL-8 proteins. On a phylogenetic tree, gcIL-8 clustered with other teleost IL-8 proteins to form a fish-specific clade, clearly distinct from those of bird, mammal, and amphibian proteins. Real-time quantitative PCR analysis indicated that gcIL-8 is differentially expressed in various tissues under normal conditions and that the expression of gcIL-8 mRNA in immune-related tissues is clearly upregulated by Aeromonas hydrophila infection. To explore the biological effects of gcIL-8, we produced a recombinant protein, rgcIL-8, in a prokaryotic expression system. Purified rgcIL-8 was confirmed to be chemoattractive for head kidney neutrophils and mononuclear leukocytes in vitro. Our histopathological study also revealed that rgcIL-8 exerts proinflammatory effects by inducing neutrophil infiltration and erythrocyte extravasation. Overall, these results suggest that IL-8 is crucially involved in the inflammatory responses of fish.
    Fish &amp Shellfish Immunology 08/2013; · 2.96 Impact Factor

Full-text (2 Sources)

Download
36 Downloads
Available from
Jun 1, 2014