The paracrine effect of exogenous growth hormone alleviates dysmorphogenesis caused by tbx5 deficiency in zebrafish (Danio rerio) embryos

Department of Medical Research and Education, National Yang-Ming University Hospital, Yilan, Taiwan, Republic of China.
Journal of Biomedical Science (Impact Factor: 2.76). 07/2012; 19(1):63. DOI: 10.1186/1423-0127-19-63
Source: PubMed


Dysmorphogenesis and multiple organ defects are well known in zebrafish (Danio rerio) embryos with T-box transcription factor 5 (tbx5) deficiencies, mimicking human Holt-Oram syndrome.
Using an oligonucleotide-based microarray analysis to study the expression of special genes in tbx5 morphants, we demonstrated that GH and some GH-related genes were markedly downregulated. Zebrafish embryos microinjected with tbx5-morpholino (MO) antisense RNA and mismatched antisense RNA in the 1-cell stage served as controls, while zebrafish embryos co-injected with exogenous growth hormone (GH) concomitant with tbx5-MO comprised the treatment group.
The attenuating effects of GH in tbx5-MO knockdown embryos were quantified and observed at 24, 30, 48, 72, and 96 h post-fertilization. Though the understanding of mechanisms involving GH in the tbx5 functioning complex is limited, exogenous GH supplied to tbx5 knockdown zebrafish embryos is able to enhance the expression of downstream mediators in the GH and insulin-like growth factor (IGF)-1 pathway, including igf1, ghra, and ghrb, and signal transductors (erk1, akt2), and eventually to correct dysmorphogenesis in various organs including the heart and pectoral fins. Supplementary GH also reduced apoptosis as determined by a TUNEL assay and decreased the expression of apoptosis-related genes and proteins (bcl2 and bad) according to semiquantitative reverse-transcription polymerase chain reaction and immunohistochemical analysis, respectively, as well as improving cell cycle-related genes (p27 and cdk2) and cardiomyogenetic genes (amhc, vmhc, and cmlc2).
Based on our results, tbx5 knockdown causes a pseudo GH deficiency in zebrafish during early embryonic stages, and supplementation of exogenous GH can partially restore dysmorphogenesis, apoptosis, cell growth inhibition, and abnormal cardiomyogenesis in tbx5 knockdown zebrafish in a paracrine manner.

Download full-text


Available from: Tzu-Chun Tsai,
29 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Amphioxus belongs to the subphylum cephalochordata, an extant representative of the most basal chordates. Despite many studies on the endocrine system of amphioxus, no evidence showed the presence of pituitary hormones. In this study, we clearly demonstrated the existence of a functional GH-like hormone in amphioxus, which is able to bind purified GH receptors, stimulate IGF-I expression, promote growth rate of fish, and rescue embryonic defects caused by a shortage of GH. We also showed the presence of a GH/prolactin-like-binding protein containing the entire hormone binding domain of GH/prolactin receptors in amphioxus, which is widely expressed among tissues, and interacts with the GH-like hormone. It is clear from these results that the GH/GH receptor-like system is present in amphioxus and, hence, in all classes of chordates. Notably, the GH-like hormone appears to be the only member of the vertebrate pituitary hormones family in amphioxus, suggesting that the hormone is the ancestral peptide that originated first in the molecular evolution of the pituitary hormones family in chordates. These data collectively suggest that a vertebrate-like neuroendocrine axis setting has already emerged in amphioxus, which lays a foundation for subsequent formation of hypothalamic-pituitary system in vertebrates.
    Endocrinology 10/2014; 155(12):en20141377. DOI:10.1210/en.2014-1377 · 4.50 Impact Factor