Article

Ovarian Tumor Characterization using 3D Ultrasound

Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore. .
Technology in cancer research & treatment (Impact Factor: 1.94). 07/2012; 11(6). DOI: 10.7785/tcrt.2012.500272
Source: PubMed

ABSTRACT Among gynecological malignancies, ovarian cancer is the most frequent cause of death. _Preoperative determination of whether a tumor is benign or malignant has often been found to be difficult. Because of such inconclusive findings from ultrasound images and other tests, many patients with benign conditions have been offered unnecessary surgeries thereby increasing patient anxiety and healthcare cost. The key objective of our work is to develop an adjunct Computer Aided Diagnostic (CAD) technique that uses ultrasound images of the ovary and image mining algorithms to accurately classify benign and malignant ovarian tumor images. In this algorithm, we extract texture features based on Local Binary Patterns (LBP) and Laws Texture Energy (LTE) and use them to build and train a Support Vector Machine (SVM) classifier. Our technique was validated using 1000 benign and 1000 malignant images, and we obtained a high accuracy of 99.9% using a SVM classifier with a Radial Basis Function (RBF) kernel. The high accuracy can be attributed to the determination of the novel combination of the 16 texture based features that quantify the subtle changes in the images belonging to both classes. The proposed algorithm has the following characteristics: cost-effectiveness, complete automation, easy deployment, and good end-user comprehensibility. We have also developed a novel integrated index, Ovarian Cancer Index (OCI), which is a combination of the texture features, to present the physicians with a more transparent adjunct technique for ovarian tumor classification.

3 Followers
 · 
153 Views
 · 
0 Downloads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Among gynecological malignancies, ovarian cancer is the most frequent cause of death. Image mining algorithms have been predominantly used to give the physicians a more objective, fast, and accurate second opinion on the initial diagnosis made from medical images. The objective of this work is to develop an adjunct computer-aided diagnostic technique that uses 3D ultrasound images of the ovary to accurately characterize and classify benign and malignant ovarian tumors. In this algorithm, we first extract features based on the textural changes and higher-order spectra information. The significant features are then selected and used to train and evaluate the decision tree (DT) classifier. The proposed technique was validated using 1,000 benign and 1,000 malignant images, obtained from ten patients with benign and ten with malignant disease, respectively. On evaluating the classifier with tenfold stratified cross validation, the DT classifier presented a high accuracy of 97 %, sensitivity of 94.3 %, and specificity of 99.7 %. This high accuracy was achieved because of the use of the novel combination of the four features which adequately quantify the subtle changes and the nonlinearities in the pixel intensity variations. The rules output by the DT classifier are comprehensible to the end-user and, hence, allow the physicians to more confidently accept the results. The preliminary results show that the features are discriminative enough to yield good accuracy. Moreover, the proposed technique is completely automated, accurate, and can be easily written as a software application for use in any computer.
    Journal of Digital Imaging 11/2012; 26(3). DOI:10.1007/s10278-012-9553-8 · 1.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In 30% of stroke victims, the cause of stroke has been found to be the stenosis caused by plaques in the carotid artery. Early detection of plaque and subsequent classification of the same into symptomatic and asymptomatic can help the clinicians to choose only those patients who are at a higher risk of stroke for risky surgeries and stenosis treatments. Therefore, in this work, we have proposed a non-invasive computer-aided diagnostic technique to classify the detected plaque into the two classes. Computed tomography (CT) images of the carotid artery images were used to extract Local Binary Pattern (LBP) features and wavelet energy features. Significant features were then used to train and test several supervised learning algorithm based classifiers. The Support Vector Machine (SVM) classifier with various kernel configurations was evaluated using LBP and wavelet features. The SVM classifier presented the highest accuracy of 88%, sensitivity of 90.2%, and specificity of 86.5% for radial basis function (RBF) kernel function. The CT images of the carotid artery provide unique 3D images of the artery and plaque that could be used for calculating percentage of stenosis. Our proposed technique enables automatic classification of plaque into asymptomatic and symptomatic with high accuracy, and hence, it can be used for deciding the course of treatment. We have also proposed a single-valued integrated index (Atheromatic Index) using the significant features which can provide a more objective and faster prediction of the class.
    Proceedings of the Institution of Mechanical Engineers Part H Journal of Engineering in Medicine 03/2013; 227(6):643-654. DOI:10.1177/0954411913480622 · 1.14 Impact Factor
  • Journal of Medical Imaging and Health Informatics 10/2013; 3:306-313. · 0.62 Impact Factor
Show more