Article

DEVELOPMENT OF MOLTEN SALT HEAT TRANSFER FLUID WITH LOW MELTING POINT AND HIGH THERMAL STABILITY

ABSTRACT This paper describes an advanced heat transfer fluid (HTF) consisting of a novel mixture of inorganic salts with a low melting point and high thermal stability. These properties produce a broad operating range molten salt and enable effective thermal storage for parabolic trough concentrating solar power plants. Previous commercially available molten salt heat transfer fluids have a high melting point, typically 140 °C or higher, which limits their commercial use due to the risk of freezing. The advanced HTF exploits eutectic behavior with a novel composition of materials, resulting in a low melting point of 65 °C and a thermal stability limit over 500 °C. The advanced HTF described in this work was developed using advanced experiment design and data analysis methods combined with a powerful high throughput experimental workflow. Over 5000 unique mixtures of inorganic salt were tested during the development process. Additional work is ongoing to fully characterize the relevant thermophysical properties of the HTF and to assess its long term performance in realistic operating conditions for concentrating solar power applications or other high temperature processes.

0 0
 · 
0 Bookmarks
 · 
50 Views
  • Source
    Thermochimica Acta 04/2013; 560:34-42. · 1.99 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The study of the thermal decomposition of molten nitrite/nitrates salt used for thermal energy storage (TES) in concentrating solar power (CSP) was carried-out with a HITEC (Reg. U.S. Patent – Coastal Chemical Company) type salt. This salt is the commercial mixture of NaNO3–KNO3–NaNO2 in the proportions 7–53–40 wt.% (NO2/NO3 weight ratio of 0.7). The study was done by simultaneous DSC/TG-MS analysis between room temperature and 1000 °C in gas atmospheres of argon, nitrogen, air and oxygen. It was found that:•The thermal stability of the salt can be significantly enhanced by controlling the atmosphere.•By two assessment criteria, TG and DSC, the salt operated in an inert atmosphere could be used at temperature of at least 610 °C and when operated in an oxidising atmosphere up to between 650 °C and 700 °C.Oxidising atmosphere was found to change the chemistry of the salt by converting some nitrite to nitrate, and although this may have a bearing on increasing the melting point, it has the benefit of rising the thermal decomposition temperature.
    Solar Energy 01/2012; · 2.95 Impact Factor

Full-text

View
0 Downloads
Available from