Sintering behavior and dielectric properties of BaTiO3 ceramics with glass addition for internal capacitor of LTCC

Particulate Materials Research Center, Department of Resources Engineering, National Cheng Kung University, Tainan, Taiwan, ROC
Journal of Alloys and Compounds (Impact Factor: 2.73). 07/2008; 459(1-2):307-310. DOI: 10.1016/j.jallcom.2007.04.218

ABSTRACT The addition effects of ZnO–B 2 O 3 –SiO 2 (ZBS) glass on both the sintering behavior and dielectric properties of BaTiO 3 were investigated in developing low-temperature-fired BaTiO 3 -based ceramics for LTCC devices. X-ray diffractometer (XRD), scanning electron microscopy (SEM), and a dilatometer were used to examine the effect of ZBS glass on BaTiO 3 densification and the chemical reaction between the glass and BaTiO 3 . The results indicate that ZBS glass can be used as a sintering aid to reduce the sintering temperature of BaTiO 3 from 1300 to 900 • C without secondary phase formation. The dielectric properties of BaTiO 3 with ZBS glass sintered at 900 • C show a relative density of 95%, a high dielectric constant of 994, and a dielectric loss of 1.6%.


Available from: Chi-Shiung Hsi, Jun 15, 2015
1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: Commercial Kaolinite was employed as sintering aid to reduce the sintering temperature of BaTiO3 ceramics. The effects of Kaolinite content and sintering temperature on the densification, microstructure and dielectric properties of BaTiO3 ceramics have been investigated. The density characterization results show that the addition of Kaolinite significantly lowered the sintering temperature of BaTiO3 ceramics to about 1200°C. XRD results show BaTiO3 ceramics with a low amount of Kaolinite exhibited perovskite structure, but 10.0wt% Kaolinite additions resulted in the formation of a secondary phase, BaAl2Si2O8. BaO–TiO2–Al2O3–SiO2 glass phase was formed and improved the average breakdown strength of ceramics, which was supported by SEM-EDX results. The Kaolinite content had shown a strong influence on the dielectric constant and the diffuse transition. BaTiO3 ceramic with 4.0wt% Kaolinite addition possessed well temperature stability of dielectric constant.
    Journal of Alloys and Compounds 08/2011; 509(34):8561-8566. DOI:10.1016/j.jallcom.2011.06.003 · 2.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Barium titanate-based microwave dielectrics usually require relatively high temperatures to sinter, which prevents the use of base metals such as copper for electrodes. In this work, BaTi(4)O(9) microwave dielectric ceramics co-fired with copper electrodes are made possible by adding B-Si-Ba- Zn-O glass to induce liquid-phase sintering at sufficiently low temperature and in reduced atmosphere. The microstructures and electric properties of the BaTi(4)O(9) ceramics thus obtained are carefully examined and studied. Proper glass composition may significantly facilitate mass transportation in the low-temperature co-fired ceramic (LTCC) material, resulting in better densification without serious degradation of electric properties. Although the B2O3/SiO2 ratio enhances the glass mobility during sintering, the BaO/ZnO ratio contributes to the chemical affinity of glass to BaTi(4)O(9) ceramics. In addition, various Ba-Ti-O phases with different Ba/Ti ratios may be found in the specimen through the X-ray diffraction patterns when the BaO/ZnO ratio is varied. If the BaO/ZnO ratio is high and the glass flows easily in the material, the Ba(4)Ti(13)O(30) phase is formed. If the BaO/ZnO ratio is low and the glass flows easily in the material, the BaTi(6)O(13) phase appears. We find that glass-induced Ba(4)Ti(13)O(30) transformation may significantly decrease Qxf values in the BT4-BSBZ materials. Therefore, the appropriate glass composition must be selected to ensure the phase stability of dielectrics to achieve the best performance possible.
    IEEE transactions on ultrasonics, ferroelectrics, and frequency control 09/2012; 59(9):1912-8. DOI:10.1109/TUFFC.2012.2406 · 1.50 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BaTiO3 (BT) and Ni0.5Zn0.5Fe2O4 (NZF) ceramic disc specimens were prepared using commercial grade powders sintering by conventional (CV) and microwave (MW) sintering techniques. In both the sintering techniques the set sintering temperatures were in the range of 850 °C to 1000 °C and time from 0.5 to 2 h. Structure, microstructure, dielectric, ferroelectric and magnetic properties have been compared for the as sintered BT and NZF ceramic specimens. Comparatively large grain size and higher density observed for the samples sintered at same temperature and shorter holding time using microwave. Magnetic properties of the NZF samples sintered using MW at a temperature of 950 °C show a higher saturation magnetization (Ms) value of 88 emu/g.
    03/2015; DOI:10.3390/technologies3010047