Article

ESTUDIO DEL COMPORTAMIENTO DE UN ROBOT PARALELO TREPADOR PARA LABORES DE SUPERVISION

ABSTRACT RESUMEN Este trabajo propone el uso de una plataforma tipo Gought-Stewart (G-S) como robot trepador para labores de supervisión. La idea de utilizar esta plataforma como un tipo de Robot trepador es la solución al problema de llevar a cabo tareas que impliquen un alto riesgo para trabajadores que tienen que trepar a través de altas y a veces inseguras estructuras. Algunas adaptaciones de tipo mecánico se han llevado a cabo con el fin de convertir la estructura de G-S, en un autónomo y teleoperado robot trepador, capaz de moverse autónomamente a través de estructuras (postes, estructuras de acero de puentes, troncos de palmeras, tuberías, etc.) o dentro de conductos de fluidos (tuberías de transporte). Con el fin de mostrar las capacidades de utilizar este tipo de estructura G-S, como robot trepador se propone un diseño mecánico capaz de moverse a través de estructuras. Tomando en cuenta el diseño y la funcionalidad que se desea, se presentan los modelos de la cinemática directa e inversa (en coordenadas reducidas 49 en lugar de 91) y las simulaciones dinámicas para este tipo de robot. Finalmente muchos de los experimentos realizados muestran las capacidades de este robot para trepar a través a de las estructuras. El robot fue desarrollado por completo en la Universidad Politécnica de Madrid, España. Los modelos fueron validados a través de los paquetes de cálculo y simulación Matlab® y Adams 11.0®.

0 Bookmarks
 · 
88 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: An approach for the computation of the inverse dynamics of parallel manipulators is introduced. It is shown that, for this type of manipulator, the inverse kinematics and the inverse dynamics procedures can be easily parallelized. This leads to a closed-form efficient algorithm using n processors, where n is the number of kinematic chains connecting the base to the end-effector. The dynamics computations are based on the Newton-Euler formalism. The parallel algorithm arises from a judicious choice of the coordinate frames attached to each of the legs, which allows for the exploitation of the parallel nature of the mechanism itself. An example of the application of the algorithm to a spatial six-degree-of-freedom parallel manipulator is presented
    Robotics and Automation, 1993. Proceedings., 1993 IEEE International Conference on; 06/1993
  • [Show abstract] [Hide abstract]
    ABSTRACT: This paper addresses the problem of singularity-free path planning for the six-degree-of-freedom parallel manipulator known as the Stewart platform manipulator. Unlike serial manipulators, the Stewart platform possesses singular configurations within the workspace where the manipulator is uncontrollable. An algorithm has been developed to construct continuous paths within the workspace of the manipulator by avoiding singularities and ill-conditioning. Given two end-poses of the manipulator, the algorithm finds out safe (well-conditioned) via points and plans a continuous path from the initial pose to the final one. When the two end-poses belong to different branches and no singularity-free path is possible, the algorithm indicates the impossibility of a valid path. A numerical example has also been presented as illustration of the path planning strategy.
    Mechanism and Machine Theory 01/1998; · 1.21 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A novel derivation of the forward dynamic equations for the Gough-Stewart platform manipulator based on Kane's equation is proposed. In this method, each leg of the Gough-Stewart platform manipulator is treated as an independent substructure, the system dynamic equations are composed of the equations of legs and platform according to the constraints among substructures. The formulation has been implemented in MATLAB routines, and simulation results have been given to show the validation of the new approach. Compared with the traditional Newton-Euler method and Lagrange formulation, the modeling process proposed in the paper is more straightforward and systematic, and the final dynamic equations are very concise
    IEEE Transactions on Robotics and Automation 03/2000;

Full-text (2 Sources)

View
58 Downloads
Available from
May 21, 2014