Exploration for Epithermal Gold Deposits

01/2000; 13:245-277.

ABSTRACT The successful exploration geologist uses knowledge of geologic relationships and ore-deposit styles, tempered by experience, to interpret all information available from a given prospect in order to develop an understanding of its mineral potential. In the case of exploration for epithermal gold deposits, this understanding can be augmented by familiarity with active hydrothermal systems, their present-day ana-logues. Just as geological skills and exploration experience are the defining elements of a philosophy of exploration, the needs of a company determine, as much as the funding and skills available, which level of exploration it pursues and where: grassroots, early-stage or advanced targets. Epithermal gold deposits have size, geometry, and grade variations that can be broadly organized around some genetic classes and, therefore, influence the exploration approach or philosophy. Nearly 80 years ago, Waldemar Lindgren defined the epithermal environment as being shallow in depth, typically hosting deposits of Au, Ag, and base metals plus Hg, Sb, S, kaolinite, alunite, and silica. Even before this, Ransome recognized two distinct styles of such precious-metal deposits, leading to the conclusion that the two end-member deposits form in environments analogous to geothermal springs and volcanic fumaroles, which are dominated by reduced, neutral-pH versus oxidized, acidic fluids, re-spectively. The terms we use are low-and high-sulfidation to refer to deposits formed in these respective environments. The terms are based on the sulfidation state of the sulfide assemblage. End-member low-sulfidation deposits contain pyrite-pyrrhotite-arsenopyrite and high Fe sphalerite, in contrast to pyrite-enargite-luzonite-covellite typifying highsulfidation deposits. A subset of the low-sulfidation style has an inter-mediate sullidation-state assemblage of pyrite-tetrahedrite/tennantite-chalcopyrite and low Fe sphalerite. Intermediate sulfidation-state deposits are Ag and base metal-rich compared to the Au-rich end-member low-sulfidation deposits, most likely reflecting salinity variations. There are characteristic mineral textures and assemblages associated with epithermal deposits and, coupled with fluid inclusion data, they indicate that most low-sulfidation and high-sulfidation deposits form in a temperature range of about 160" to 270°C. This temperature interval corresponds to a depth below the paleowater table of about 50 to 700 m, respectively, given the common evidence for boiling within epithermal ore zones. Boiling is the process that most favors precipitation of bisulfide-complexed metals such as gold. This process and the concomitant rapid cooling also result in many related features, such as gangue-mineral deposition of quartz with a colloform texture, adularia and bladed calcite in low-sulfidation deposits, and the formation of steam-heated waters that create advanced argillic alteration blankets in both low-sulfidation and high-sulfidation deposits. Epithermal deposits are extremely variable in form, and much of this variability is caused by strong permeability differences in the near-surface environment, resulting from lithologic, structural, and hydra thermal controls. Low-sulfidation deposits typically vary from vein through stockwork to disseminated forms. Gold ore in low-sulfidation deposits is commonly associated with quartz and adularia, plus calcite or sericite, as the major gangue minerals. The alteration halos to the zone of ore, particularly in vein deposits, include a variety of temperature-sensitive clay minerals that can help to indicate locations of paleofluid flow. The areal extent of such clay alteration may be two orders of magnitude larger than the actual ore deposit. In contrast, a silicic core of leached, residual silica is the principal host of high-sulfidation ore. Outward from this commonly vuggy quartz core is a typically upward-flaring advanced argillic zone consisting of hypogene quartz-alunite and kaolin minerals, in places with pyrophyllite, diaspore, or zunyite. The deposit form varies from disseminations or replacements to veins, stockworks, and hydrothermal breccia. During initial assessment of a prospect, the first goal is to determine if it is epithermal, and if so, its style, low-sulfidation or high-sulfidation. Other essential determinations are: (1) the origin of advanced argillic %orresponding author: e-mail, 245 246 HDENQUIST ET AL.. alteration, (i.e., hypogene, steam-heated, or supergene), (2) the origin of silicic alteration (e.g., residual silica or silicification), and (3) the likely controls on grade (i.e., the potential form of the orebody), be-cause this is one of the most basic characteristics of any deposit. These determinations will define in part the questions to be asked, such as the relationship between alteration zoning and the potential ore zone, and will guide further exploration and eventual drilling, if warranted. Observations in the field must focus on the geologic setting and structural controls, alteration mineralogy and textures, geochemical anomalies, etc. Erosion and weathering must also be considered, the latter masking ore in places but potentially improving the ore quality through oxidation. As information is compiled, reconstruction of the topography and, hence, hydraulic gradient during hydrothermal activity, combined with identifica-tion of the zones of paleofluid flow, will help to identify ore targets. Geophysical data, when interpreted carefully in the appropriate geological and geochemical context, may provide valuable information to aid drilling by identifying, for example, resistive and/or chargeable areas. The potential for a variety of related deposits in epithermal districts has exploration implications. For example, there is clear evidence for a spatial, and in some cases genetic relationship between high-sulfidation epithermal deposits and underlying or adjacent porphyry deposits. Similarly, there is increasing recognition of the potential for economic intermediate sulfidation-state base metal k Au-Ag veins adjacent to high-sulfidation deposits. By contrast, end-member low-sulfidation deposits appear to form in a geologic envi-ronment incompatible with porphyry or high-sulfidation deposits of any economic significance. The expla-nation for these empirical metallogenic relationships may be found in the characteristics of the magma (e.g., oxidation potential) and of the magmatic fluid genetically associated with the epithet-ma1 deposit. For effective exploration it is essential to maximize the time in the field of well-trained and experi-enced geologists using tried and tested methods. Understanding the characteristics of the deposit style being sought facilitates the construction of multiple working hypotheses for a given prospect, which leads to efficiently testing each model generated for the prospect, using the tools appropriate for the situation. Geologists who understand ore-forming processes and are creative thinkers, and who spend much of their time working in the field within a supportive corporate structure, will be best prepared to find the epithermal deposits that remain hidden.

1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Volcanic succession consists of shallow subaqueous hyaloclastite and resedimented andesitic breccia at the surface.•Extension during the Upper Cretaceous was associated with the end of volcanism and deep marine sedimentation.•Altered cerebroid ooids is characteristic of hypersaline shallow water sedimentary environment.•The mineralizing hydrothermal system likely developed underwater.
    Journal of Volcanology and Geothermal Research 11/2014; 289:1-13. · 2.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Southern Peru contains important epithermal Au–Ag (± base metals) deposits, such as Canahuire, Tucari, Santa Rosa, Caylloma, Shila and Paula. The Chapi Chiara gold prospect is located in this region and is part of a paleo-stratovolcano of the Upper Miocene–Pliocene. The hydrothermal alteration of the prospect was characterized based on spectroradiometric data, geochemistry and petrography. The mineralogical data, interpreted based on reflectance spectroscopy, were spatialized using the sequential indicator simulation technique for producing probabilistic maps of alteration. The inner part of the paleo-stratovolcano (SW sector) is marked by three main cores of advanced argillic alteration (AAA) (quartz–alunite supergroup minerals–kaolinite–dickite ± topaz ± pyrophyllite ± diaspore) associated with topographic highs. The AAA1 core is surrounded by argillic alteration (quartz–illite–paragonitic illite–smectite ± pyrite) and propylitic alteration (quartz–plagioclase–chlorite–calcite–epidote–smectite ± kaolinite ± pyrite ± chalcopyrite ± magnetite). The central sector of the prospect, situated in the NE flank of the paleo-stratovolcano, is characterized by hydrothermal breccias structured towards N65E. The main mineral phases comprise quartz and abundant pyrite, sometimes with traces of As. Anomalous geochemical values of Ag, As, Bi, Hg, Se, Sb and Te coincide with high gold contents in this sector of the prospect. Jarosite and goethite are evidence of a subsequent supergene event. Based on the mineralogical characterization, we conclude the existence of a high sulfidation epithermal system in Chapi Chiara. Hypogene minerals of higher temperature in the SW sector of the prospect, such as diaspore, pyrophyllite and topaz in the AAA zone, and epidote in the propylitic alteration zone, can reveal that the system is currently in a relatively deep erosion level, suggesting its proximity in relation to the interface between a deep epithermal system and a mesothermal system.
    Ore Geology Reviews 01/2014; 64:299. · 3.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Subduction of Tethyan oceanic crust during the Tertiary produced the most voluminous igneous rocks in Iran. They form two belts: the NW-trending Urumieh-Dokhtar zone in central Iran and the Alborz magmatic belt in northern Iran. Recent studies suggest that a single continental arc may have been rifted to form the two belts. The belts host many precious and base metal prospects. This paper documents two of these prospects; the Gandy and Abolhassani prospects hosted by Eocene igneous rocks in the Alborz belt. The country rocks show a typical arc geochemical signature with high LILE/HFSE ratios. The mineralization in the Gandy area form veins and breccias and is divided into three stages; precious metal mineralization (Stage I), base-metal mineralization (Stage 2) and the formation of quartz and calcite (Stage 3). Native gold is common in Fe oxides, a weathering product of pyrite, in Stage I, and coexists with galena and chalcopyrite in Stage 2. The Abolhassani veins show three stages. The first two stages formed quartz, calcite, galena, sphalerite, pyrite and chalcopyrite, and are followed by the formation of quartz and calcite. The average of homogenization temperatures and salinities of fluid inclusion assemblages from Gandy range from 234 to 28C, and 4.2 to 5.4 wt% NaCl equivalent. These temperatures are in a good agreement with isotopic temperatures from two sulfides pairs (236 and 24C). The Abolhassani area shows higher average temperatures (234–34C) and salinities (6.7 -18.7 wt% NaCl equivalent) of fluid inclusion assemblages. The lower temperature hydrothermal fluid component in the two areas is comparable, but the Abolhassani district contained a higher salinity component. The base metal-rich mineralization at Abolhassani may thus have been caused by the periodic injection of this high salinity fluid. Mineralization occurred at least 430 m and 600 m below the paleowater table at Gandy and Abolhassani, respectively. Based on the low grades of Au and high salinity of fluids at Abolhassani, it is unlikely to find precious-metal rich zones at greater depth. By contrast, Gandy has potential at depth for extensions of the high-grade gold veins. Results of this study may aid in exploration of the numerous untested epithermal and related prospects along the 1800-km long volcanic belts in northern Iran.


Available from