Silicate features in Galactic and extragalactic post-AGB discs

Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, Alan Turing Building, The University of Manchester, M13 9PL, Manchester, UK
Astronomy and Astrophysics (Impact Factor: 4.48). 09/2011; 533. DOI: 10.1051/0004-6361/201117364

ABSTRACT Aims. In this paper we study the Spitzer and TIMMI2 infrared spectra of post-AGB disc sources, both in the Galaxy and the LMC. Using the observed infrared spectra we determine the mineralogy and dust parameters of the discs, and look for possible differences between the Galactic and extragalactic sources. Methods. Modelling the full spectral range observed allows us to determine the dust species present in the disc and different physical parameters such as grain sizes, dust abundance ratios, and the dust and continuum temperatures. Results. We find that all the discs are dominated by emission features of crystalline and amorphous silicate dust. Only a few sample sources show features due to CO 2 gas or carbonaceous molecules such as PAHs and C 60 fullerenes. Our analysis shows that dust grain processing in these discs is strong, resulting in large average grain sizes and a very high crystallinity fraction. However, we do not find any correlations between the derived dust parameters and properties of the central source. There also does not seem to be a noticeable difference between the mineralogy of the Galactic and LMC sources. Even though the observed spectra are very similar to those of protoplanetary discs around young stars, showing similar mineralogy and strong grain processing, we do find evidence for differences in the physical and chemical processes of the dust processing.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The presence of disks and outflows is widespread among post-AGB binaries. In the first paper of this series, a surprisingly large fraction of optical light was found to be resolved in the 89 Her post-AGB system. The data showed this flux to arise from close to the central binary. Scattering off the inner rim of the circumbinary disk, or in a dusty outflow were suggested as two possible origins. With detailed dust radiative transfer models of the disk we aim to discriminate between these two configurations. By including Herschel/SPIRE photometry, we extend the SED such that it now fully covers UV to sub-mm wavelengths. The MCMax radiative transfer code is used to create a large grid of disk models. Our models include a self-consistent treatment of dust settling as well as of scattering. A Si-rich composition with two additional opacity sources, metallic Fe or amorphous C, are tested. The SED is fit together with mid-IR (MIDI) visibilities as well as the optical and near-IR visibilities of Paper I, to constrain the structure of the disk and in particular of its inner rim. The near-IR visibility data require a smooth inner rim, here obtained with a two-power-law parameterization of the radial surface density distribution. A model can be found that fits all the IR photometric and interferometric data well, with either of the two continuum opacity sources. Our best-fit passive models are characterized by a significant amount of mm-sized grains, which are settled to the midplane of the disk. Not a single disk model fits our data at optical wavelengths though, the reason being the opposing constraints imposed by the optical and near-IR interferometric data. A geometry in which a passive, dusty, and puffed-up circumbinary disk is present, can reproduce all the IR but not the optical observations of 89 Her. Another dusty, outflow or halo, component therefore needs to be added to the system.
    Astronomy and Astrophysics 08/2014; 568. · 4.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We report O and Mg isotope compositions of presolar silicate grains which likely formed around asymptotic giant branch stars. Our grains represent the most abundant Mg-rich presolar grain group and their Mg isotope composition provides thus far missing information about the contribution of isotopically anomalous presolar dust to the Mg isotope inventory of the early Solar System. Presolar silicate grains were identified in situ, using the NanoSIMS, in the matrix of the ungrouped carbonaceous chondrite Acfer 094. O isotope compositions suggest that the presolar grains of the present study formed in the stellar winds of low mass (M ⩽ ∼2.2 × Msolar) red giant or asymptotic giant branch stars of close-to-solar metallicity and thus belong to the most abundant presolar silicate grain group. In order to minimise matrix contributions during spatially poorly resolved Mg isotope analyses (spatial resolution comparable to average grain size), meteorite matrix in the presolar grains’ vicinity was removed using a focussed Ga ion beam. To monitor accuracy, we prepared and analysed O-isotopically regular (Solar System) matrix grains the same way as the presolar grains. The 25Mg/24Mg ratios of all seven successfully analysed presolar silicate grains are identical to that of the Solar System at the precision of our measurements. The 26Mg/24Mg ratios of five grains are also solar but two grains have significant positive anomalies in 26Mg/24Mg. On average, however, 25Mg/24Mg and 26Mg/24Mg ratios are higher than solar by a few %. All grain compositions are consistent with Galactic chemical evolution and, possibly, isotope fractionation caused by interstellar or Solar System processing (sputtering and/or recondensation). The grain with the strongest enrichment in 26Mg relative to 25Mg (δ25Mg = 34 ± 25‰, δ26Mg = 127 ± 25‰; where δxMg = 1000 × [(xMg/24Mg)grain/(xMg/24Mg)meteorite matrix) − 1] with x = 25 or 26; the reported uncertainty corresponds to 1 σ), probably incorporated 26Al during grain condensation. Our and previously reported Mg isotope data on presolar oxide and silicate grains indicate that the isotopically anomalous O-rich dust component of the Solar System’s parent molecular cloud was heterogeneous with respect to Mg isotope compositions and probably had a higher 26Mg/24Mg ratio on average than that of the present-day Solar System.
    Geochimica et Cosmochimica Acta 09/2014; 140:577–605. · 4.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The condensation of complex silicates with pyroxene and olivine composition under conditions prevailing in molecular clouds has been experimentally studied. For this purpose, molecular species comprising refractory elements were forced to accrete on cold substrates representing the cold surfaces of surviving dust grains in the interstellar medium. The efficient formation of amorphous and homogeneous magnesium iron silicates at temperatures of about 12 K has been monitored by IR spectroscopy. The gaseous precursors of such condensation processes in the interstellar medium are formed by erosion of dust grains in supernova shock waves. In the laboratory, we have evaporated glassy silicate dust analogs and embedded the released species in neon ice matrices that have been studied spectroscopically to identify the molecular precursors of the condensing solid silicates. A sound coincidence between the 10 μm band of the interstellar silicates and the 10 μm band of the low-temperature siliceous condensates can be noted.
    Faraday Discussions 08/2014; 168. · 4.19 Impact Factor

Full-text (3 Sources)

Available from
Jun 10, 2014