ABSTRACT Resumen – En este trabajo se describen los criterios de diseño de sistemas de generación y transmisión de energía eléctrica en espacio libre a partir de distribuciones de cargas eléctricas móviles en solenoides y en antenas dipolo, aprovechando las condiciones de inducción electromagnética. Se deducen las ecuaciones que predicen la potencia eléctrica obtenida y se proponen diferentes estructuras de posibles montajes prácticos. Inicialmente se revisan los fundamentos teóricos de la radiación electromagnética de las cargas eléctricas en movimiento, posteriormente se proponen sistemas de generación de energía basados en dipolos magnéticos y eléctricos y de transmisión utilizando bobinas con núcleo de ferrita y antenas. La antena transmisora es rotatoria y la antena receptora está compuesta por dos dipolos extensibles. Finalmente se explican las posibles aplicaciones y las tendencias futuras. Palabras Clave — Cargas eléctricas, dipolos eléctricos y magnéticos, Ley de Faraday, transmisión de energía. Abstract — In this work to the criteria of design of generation systems and transmission of electrical energy in free space from distributions of movable electrical charges in solenoids and dipole antennas are described, taking advantage of the conditions of electromagnetic induction. The equations are deduced that predict the obtained electrical power and different structures from possible practical assemblies set out. Initially the theoretical foundations of the electromagnetic radiation of the electrical charges in movement are reviewed, later systems of transmission and energy generation set out based on magnetic dipoles and electrical using coils with ferrite nucleus and antennas. The transmitting antenna is rotatory and the receiving antenna is composed by two tensile dipoles. Finally the possible applications and the future tendencies are explained.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigate whether, and to what extent, the physical phenomenon of long-lifetime resonant electromagnetic states with localized slowly-evanescent field patterns can be used to transfer energy efficiently over non-negligible distances, even in the presence of extraneous environmental objects. Via detailed theoretical and numerical analyses of typical real-world model-situations and realistic material parameters, we establish that such a non-radiative scheme can lead to “strong coupling” between two medium-range distant such states and thus could indeed be practical for efficient medium-range wireless energy transfer.
    Annals of Physics 11/2006; DOI:10.1016/j.aop.2007.04.017 · 3.07 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We show that the Jaynes-Cummings model cannot be realized when using a strongly driven electric-dipole transition. The limitations are inherent in electric-dipole coupling and are much more severe than those recently discussed by Crisp [Phys. Rev. A 43, 2430 (1991)]. The level shifts associated with the violation of the rotating-wave approximation are roughly equal for circular and linear polarizations.
    Physical Review A 11/1991; 44(7):4765-4766. DOI:10.1103/PhysRevA.44.4765 · 2.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Summary In the search for a model with non-dissipative currents for the excitation oftheEarth'smagnetic¢eld,stationarydipole domainsare foundto exist under high pressure.With such domains in an onion-like structure as a model for the iron-rich core, the Earth's magnetic ¢eld can be calculated with acceptable accuracy.The magneticdipole momentispredictedtobe proportional to the angular velocity, the core-radius to the fourth power andtothesquarerootofthepressureatthecoreradius.Fieldreversalmay be explained bya low-loss reversal ofdipole orientation, keeping the sta- tionary energy level constant. An application of the theory to other pla- nets yields magnetic ¢elds in the observed order of magnitude with the exception of Mars and Venus, whose magnetic ¢elds are grossly over- estimated; in the case of Mars presumably caused by a drop in energy content of the core, in the case of Venus possibly due to the extremely slow rotation causing hydrodynamic e¡ects to prevent the synchronous rotation of the charges. A tough demand deriving from the variety of planets is met by the theory: for planets di¡ering in mass by a factor of 5755, such as Jupiter and Mercury, the theory predicts magnetic dipole moments spanning eight orders of magnitude with acceptable accuracy.
    01/1998; 207.


Available from