Article

DNA Sensing Using Nanocrystalline Surface-Enhanced Al2O3 Nanopore Sensors

Advanced Functional Materials (Impact Factor: 10.44). 04/2010; 20(8). DOI: 10.1002/adfm.200902128

ABSTRACT A new solid-state, Al2O3 nanopore sensor with enhanced surface properties for the real-time detection and analysis of individual DNA molecules is reported. Nanopore formation using electron-beam-based decomposition transforms the local nanostructure and morphology of the pore from an amorphous, stoichiometric structure (O to Al ratio of 1.5) to a heterophase crystalline network, deficient in O (O to Al ratio of ≈0.6). Direct metallization of the pore region is observed during irradiation, thereby permitting the potential fabrication of nanoscale metallic contacts in the pore region with application to nanopore-based DNA sequencing. Dose-dependent phase transformations to purely γ and/or α-phase nanocrystallites are also observed during pore formation, allowing for surface-charge engineering at the nanopore/fluid interface. DNA transport studies reveal an order-of-magnitude reduction in translocation velocities relative to alternate solid-state architectures, accredited to high surface-charge density and the nucleation of charged nanocrystalline domains. The unique surface properties of Al2O3 nanopore sensors make them ideal for the detection and analysis of single-stranded DNA, double-stranded DNA, RNA secondary structures, and small proteins. These nanoscale sensors may also serve as useful tools in studying the mechanisms driving biological processes including DNA–protein interactions and enzyme activity at the single-molecule level.

Full-text

Available from: Jian-Min Zuo, May 30, 2015
0 Followers
 · 
98 Views
  • 02/2015; 60(3):304-319. DOI:10.1007/s11434-014-0705-8
  • [Show abstract] [Hide abstract]
    ABSTRACT: The improvement of the resolution of DNA sequencing by nanopore technology is very important for its real-life application. In this paper, we report our work on using molecular dynamics simulation to study the dependence of DNA sequencing on the translocation time of DNA through a graphene nanopore, using the single-strand DNA fragment translocation through graphene nanopores with diameters down to similar to 2 nm as examples. We found that A, T, C, and G could be identified by the difference in the translocation time between different types of nucleotides through 2 nm graphene nanopores. In particular, the recognition of the graphene nanopore for different nucleotides can be greatly enhanced in a low electric field. Our study suggests that the recognition of a graphene nanopore by different nucleotides is the key factor for sequencing DNA by translocation time. Our study also indicates that the surface of a graphene nanopore can be modified to increase the recognition of nucleotides and to improve the resolution of DNA sequencing based on the DNA translocation time with a suitable electric field.
    RSC Advances 01/2014; 5(13):9389-9395. DOI:10.1039/C4RA12530D · 3.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nanopore-based sequencers, as the fourth-generation DNA sequencing technology, have the potential to quickly and reliably sequence the entire human genome for less than $1000, and possibly for even less than $100. The single-molecule techniques used by this technology allow us to further study the interaction between DNA and protein, as well as between protein and protein. Nanopore analysis opens a new door to molecular biology investigation at the single-molecule scale. In this article, we have reviewed academic achievements in nanopore technology from the past as well as the latest advances, including both biological and solid-state nanopores, and discussed their recent and potential applications. Copyright © 2015. Production and hosting by Elsevier Ltd.
    Genomics Proteomics & Bioinformatics 03/2015; 18(1). DOI:10.1016/j.gpb.2015.01.009