MEMS shear stress sensors: promise and progress

Department of Mechanical and Aerospace Engineering; Department of Electrical and Computer Engineering, University of Florida -Gainesville, 32611-6250, Florida; MS170, NASA Langley Research Center Hampton Virginia, 23681
IUTAM Symposium on Flow Control and MEMS 09/2006; DOI: 10.2514/6.2004-2606

ABSTRACT This paper reviews existing microelectromechanical systems (MEMS)-based shear stress sensors. The promise and progress of MEMS scaling advantages to improve the spatial and temporal resolution and accuracy of shear stress measurement is critically reviewed. The advantages and limitations of existing devices are discussed. Finally, unresolved technical issues are summarized for future sensor development.

  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A micromachined floating element array sensor was designed, fabricated, and characterized. The sensor chip is 1 cm2 and includes 16 separate sensor groups in a 4 by 4 array with a pitch of approximately 2 mm. The device was fabricated using four layers of surface micromachining including copper and nickel electroplating. A capacitance to digital converter IC was used to measure the differential capacitance change resulting from flow forces. The achieved resolution is limited by white noise with a level of 0.24 Pa/√Hz, and linearity is demonstrated to >13 Pa. Experimental characterization in three different duct height laminar flow cells allowed independent determination of the sensitivity to shear stress and pressure gradient. The sensor chip with half the elements acting in parallel has a sensitivity of 77.0 aF/Pa to shear and −15.8 aF/(Pa/mm) to pressure gradient. Pressure gradient sensitivity is found to be an important contributor to overall output, and must be accounted for when calibrating floating element shear stress sensors if accurate measurements are to be achieved. This work is the first demonstration of a shear sensor array on a chip with independent pressure gradient sensitivity calibration.
    Sensors and Actuators A Physical 01/2014; 205:133–142. · 1.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this paper, we present carbon nanotube (CNT) based thermal shear stress sensors integrated inside optically transparent Polymethylmethacrylate (PMMA) microfluidic systems. The sensors were fabricated on PMMA substrates by batch assembling multi-walled carbon nanotubes (MWNTs) as sensing elements between microelectrode pairs using AC dielectrophoretic (DEP) technique. PMMA chambers were fabricated using SU-8 molding/hot-embossing technique. Then, the PMMA substrate with a micro chamber and vortex micropump was bonded to the other PMMA substrate embedded with the MWNT sensor array to form a closed flow chamber. Experiments showed that the CNT sensors could detect volumetric air flow rate in the order of 10 -8 m 3 /s inside this microchannel system. We have also proved that upon exposure to constant liquid (DI-water) flow, the electrical resistance of the CNT sensor was found to increase linearly at low activation current of 100μA. And a linear relation between the change of output resistance and one-third power of flow rate was observed for flow rate from 0.3 to 2.3m/s. This result proved that the CNT sensors work with the same principle as conventional MEMS based thermal shear stress sensors, but only require ultra-low activation power (~μW) to achieve comparable sensitivity, which is three orders of magnitude lower than conventional MEMS polysilicon based flow sensors.

Full-text (2 Sources)

Available from
May 29, 2014