Article

Collagen and picrosirius red staining: a polarized light assessment of fibrillar hue and spatial distribution

Department of Anesthesiology, University of Massachusetts Medical School, Worcester, MA, USA
J. morphol. Sci 01/2005; 22:97-104.

ABSTRACT Collagen plays a vital role in maintaining structural integrity and in determining tissue function. Therefore, methods to detect, quantify, and analyze collagen are valuable. Nevertheless, stains historically employed to detect collagen have disadvantages, principally a poor specificity for thin fibers. Conversely, picrosirius red, which has the capability to detect thin fibers, although frequently used, is seldom exploited to the fullest extent. Our goal was, using picrosirius red staining, circularly polarized light, and image-analysis software, not only to identify fibers and quantify collagen content, but also to assess fiber hue and the spatial distribution of the different colors. To assess collagen content, we used a subtraction technique to remove interstitial space and non-collagen elements from images of skin wounds, myocardial scars, and arterial tissue. The hue component of the resulting image was obtained, and the number of red, orange, yellow, and green (the colors of collagen fibers in order of decreasing thickness) pixels calculated. Finally, we assessed the spatial distribution of individual colors by the application of color threshold filters. Skin wound analysis demonstrated good inter-observer agreement for collagen content and fiber color. In myocardial scars, collagen content increased from 1 (61%) to 5 weeks (95%) after injury. The proportion of green (thin) fibers decreased (43 to 4%), while the proportion of orange (thick) fibers increased (13 to 65%). Color threshold application revealed regional variation in fiber color within subintimal arterial lesions. These methods increase the amount of structural information obtained from picrosirius red-stained sections. INTRODUCTION Collagen fibers play a vital role not only in maintaining structural integrity, but also in determining tissue function. For example, collagen degradation and loss after myocardial infarction is associated with infarct expansion and subsequent functional decline [33]. On the other hand, although collagen confers tensile strength, excess accumulation is often detrimental. For instance, increased fibrosis after kidney transplant leads to a decrease in renal function and eventual graft failure [6,9], and hence quantification of fibrosis has been suggested as a means to predict graft survival. In such examples, insight into pathological structure-function relationships depends upon accurate identification of collagen fibers.

4 Followers
 · 
696 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The degradation of the main fibrillar collagens, collagens I and II, is a crucial process for skeletal development. The most abundant dipeptides generated from the catabolism of collagens contain proline and hydroxyproline. In humans, prolidase is the only enzyme able to hydrolyze dipeptides containing these amino acids at their C-terminal end, thus being a key player in collagen synthesis and turnover. Mutations in the prolidase gene cause prolidase deficiency (PD), a rare recessive disorder. Here we describe 12 PD patients, 9 of whom were molecularly characterized in this study. Following a retrospective analysis of all of them a skeletal phenotype associated with short stature, hypertelorism, nose abnormalities, microcephaly, osteopenia and genu valgum, independent of both the type of mutation and the presence of the mutant protein was identified. In order to understand the molecular basis of the bone phenotype associated with PD, we analyzed a recently identified mouse model for the disease, the dark-like (dal) mutant. The dal/dal mice showed a short snout, they were smaller than controls, their femurs were significantly shorter and pQCT and μCT analyses of long bones revealed compromised bone properties at the cortical and at the trabecular level in both male and female animals. The differences were more pronounce at 1month being the most parameters normalized by 2months of age. A delay in the formation of the second ossification center was evident at postnatal day 10. Our work reveals that reduced bone growth was due to impaired chondrocyte proliferation and increased apoptosis rate in the proliferative zone associated with reduced hyperthrophic zone height. These data suggest that lack of prolidase, a cytosolic enzyme involved in the final stage of protein catabolism, is required for normal skeletogenesis especially at early age when the requirement for collagen synthesis and degradation is the highest. Copyright © 2014 Elsevier Inc. All rights reserved.
    Bone 11/2014; 72C:53-64. DOI:10.1016/j.bone.2014.11.009 · 4.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to investigate the wound-healing activity of (-)-borneol (BOR) incorporated in chitosan film on healing protocol in rodents. To assess the BOR wound-healing potential, male Wistar rats were subjected to a full-thickness excisional wound. The animals were divided into three groups: dressed with chitosan-based film (QUIN); dressed with chitosan-based film containing 0·5% BOR (QUIBO05); or dressed with chitosan-based film containing 1% BOR (QUIBO1). Dressing the wound areas and histological analysis were performed on the 3rd, 7th, 14th, and 21st days. The myeloperoxidase (MPO) activity was assessed on the third and seventh days after surgical procedures. Wounds dressed with chitosan-based film containing BOR reduced significantly the MPO activity (P < 0·001), showed significantly larger wound retraction rates (7 days, P < 0·05), improved the granulation reaction, and also provided better collagenisation density and arrangement during wound healing. It is suggested that BOR modulates the wound-healing process and is a promising compound to be used in wound care. This product may be quite useful in improving wound healing and could be a new biotechnological product with healing properties and clinical application. Further ongoing studies will enable us to understand the precise mechanisms whereby BOR improves the wound-healing process. © 2014 Medicalhelplines.com Inc and John Wiley & Sons Ltd.
    International Wound Journal 12/2014; DOI:10.1111/iwj.12385 · 2.02 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Inadequate healing and high anastomosis leak rates at rectal anastomosis may be due to lack of supportive serosal layer and technical difficulty of low anterior resections. Positive effects of sildenafil on wound healing were observed. The aim of this study was to simulate rectal anastomosis as a technical insufficient anastomosis and investigate the effects of sildenafil on anastomosis healing. Colonic anastomoses were carried out in 64 rats and randomized into four groups, CA-S, complete anastomoses without sildenafil (10mg/kg for 5 days); CA+S, complete anastomoses with sildenafil; IA-S, incomplete anastomoses without sildenafil; IA+S, incomplete anastomoses with sildenafil. Half of the rats in every group were sacrificed on post-operative day (POD) 3, half of them sacrificed on POD 7. Tissues from the anastomoses were used for functional, histochemical, biochemical investigations. Sildenafil treatment resulted in increased bursting pressures in IA+S on POD 7 (p=0.010). Collagen maturity was higher in IA+S on POD 3 and POD 7, CA+S on POD 7 (P=0.010; P=0.010; P<0.007). Collagen content was higher in IA+S on POD 7 (p<0.001). Glutathione, hydroxyproline levels were similar. Malondialdehyde levels were lower in IA+S on POD 3 (p<0.001). Epithelization score was higher in IA+S on POD 7 (p=0.007). Inflammation score was higher in CA-S group on POD 3 and POD 7 (p<0.001; p<0.001). Neutrophil score was lower in CA+S on POD 3 (P=0.005). An increase in collagen content, maturity, and epithelization, a decrease in neutrophil infiltration, oxidative stress and better mechanical strength were observed with the administration of sildenafil. Copyright © 2014. Published by Elsevier Ltd.
    International Journal of Surgery (London, England) 12/2014; DOI:10.1016/j.ijsu.2014.11.042 · 1.65 Impact Factor

Preview

Download
29 Downloads
Available from