Article

Oceanic euxinia in Earth history: Causes and consequences

Annual Review of Earth and Planetary Sciences (Impact Factor: 8.83). 01/2008; 36:251-88. DOI: 10.1146/annurev.earth.36.031207.124256

ABSTRACT Euxinic ocean conditions accompanied significant events in Earth history, including several Phanerozoic biotic crises. By critically ex-amining modern and ancient euxinic environments and the range of hypotheses for these sulfidic episodes, we elucidate the primary factors that influenced the generation of euxinia. We conclude that periods of global warmth promoted anoxia because of reduced sol-ubility of oxygen, not because of ocean stagnation. Anoxia led to phosphate release from sediments, and continental configurations with expansive nutrient-trapping regions focused nutrient recycling and increased regional nutrient buildup. This great nutrient supply would have fueled high biological productivity and oxygen demand, enhancing oxygen depletion and sulfide buildup via sulfate reduc-tion. As long as warm conditions prevailed, these positive feedbacks sustained euxinic conditions. In rare, extreme cases, euxinia led to biotic crises, a hypothesis best supported by evidence from the end-Permian mass extinction.

1 Bookmark
 · 
243 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Models of mass extinctions caused by greenhouse warming depend on the ability of warming to affect the oxygenation of the ocean, either through slowing circulation or changes in biological productivity and the organic carbon budget. Opal Creek, Alberta, Canada is a biostratigraphically continuous Permian–Triassic Boundary (PTB) section deposited in deep water on an outer shelf setting in the vast and understudied Panthalassic Ocean, along the western margin of Pangaea. The latest-Permian extinction is here represented as the disappearance of the previously dominant benthic fauna (siliceous sponges). On the basis of nitrogen and reduced sulfur isotopes as well as productivity-sensitive trace elements, the Middle Permian at Opal Creek is interpreted as a highly productive coastal upwelling zone where vigorous denitrification and sulfate reduction occurred in a mid-water oxygen minimum. Similar conditions appear to have continued into the latest Permian until the onset of a euxinic episode represented by a discrete pyrite bed and several trace element indicators of high productivity. This euxinic pulse is followed by the extinction of benthic fauna and a shift in nitrogen and sulfur isotopes to more normal marine values, suggesting the cessation of coastal upwelling and the consequent weakening of the mid-water oxygen minimum. The Lower Triassic appears to be a dysoxic, relatively unproductive environment with a bottom water oxygen minimum. Rhenium–osmium isotope systematics show a minimum of radiogenic Os near the main extinction event, which may be due to volcanic input, and increasingly radiogenic values approaching the PTB, possibly due to increased continental erosion. The Opal Creek system demonstrates that, while the biogeochemical crisis in the latest Permian was capable of impacting the coastal upwelling modality of ocean circulation, a transient increase in productivity likely drove the system toward euxinia and, ultimately, extinction.
    Global and Planetary Change 06/2013; 105:21–35. · 3.16 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Frasnian–Famennian transition of the Late Devonian was one of the most critical intervals in the Phanerozoic. Sulphur isotopic pairs of carbonate-associated sulphate and pyrite sulphide from coeval sections in South China and Poland reveal frequent perturbations of sulphur cycling during this time interval. These data suggest a sudden oceanic overturn during a rapid sea-level fall probably induced by jerky block tilting in the latest Frasnian. This event was followed by long-lasting photic-zone euxinia during a rapid sea-level rise in the earliest Famennian. Large increases in continental nutrient fluxes, and subsequent primary productivity and organic burial, could have greatly enhanced bacterial sulphate reduction, producing excessive sulphide through the water columns owing to iron depletion. Subsequently, rapid ventilation of oceanic basins occurred, during which direct aerobic oxidation of sulphide into sulphate predominated in bottom waters and even surface sediments with minimal fractionation. This oxygenation was probably induced by intensive climatic cooling and/or large-scale sea-level fall. The temporal coincidence of two extinction phases with the oceanic overturn and succeeding photic-zone euxinia suggests that these extreme oceanic events played an important role in the severe biotic crisis. Furthermore, photic-zone euxinia coupled with subsequent climatic cooling may have delayed post-extinction recovery of some taxa.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Understanding the key factors influencing the global oceanic redox system is crucial to fully explaining the variations in oceanic chemical dynamics that have occurred throughout the Earth's history. In order to elucidate the mechanisms behind these variations on geological timescales, numerical sensitivity experiments were conducted with respect to the partial pressure of atmospheric molecular oxygen (pO2), the continental shelf area (Acs), and the riverine input rate of reactive phosphorus to the oceans (RP). The sensitivity experiment for atmospheric pO2 indicates that pervasive oceanic anoxia and euxinia appear when pO2<0.145 atm and <0.125 atm, respectively. These critical values of pO2 are higher than a previous estimate of ~50% PAL (present atmospheric level) due to redox-dependent phosphorus cycling. The sensitivity experiment regarding the shelf area demonstrates that changes in the shelf area during the Phanerozoic significantly affected oceanic oxygenation states by changing marine biogeochemical cycling; a large continental shelf acts as an efficient buffer against oceanic eutrophication and prevents the appearance of ocean anoxia/euxinia. We also found that an enhanced RP is an important mechanism for generation of widespread anoxia/euxinia via expansion of both the oxygen minimum zone and coastal deoxygenation, although the critical RP value depends significantly on pO2, Acs, and the redox-dependent burial efficiency of phosphorus at the sediment--water interface. Our systematic examination of the oceanic redox state under Cretaceous greenhouse climatic conditions also supports the above results.
    Earth and Planetary Science Letters 07/2013; 373:129–139. · 4.72 Impact Factor

Full-text (2 Sources)

View
42 Downloads
Available from
May 29, 2014