A third order conservative Lagrangian type scheme on curvilinear meshes for the compressible Euler equation

Division of Applied Mathematics, Brown University, 02912, Providence, RI, USA
COMMUNICATIONS IN COMPUTATIONAL PHYSICS Commun. Comput. Phys 12/2008; 4:1008-1024.

ABSTRACT Based on the high order essentially non-oscillatory (ENO) Lagrangian type scheme on quadrilateral meshes presented in our earlier work [3], in this paper we develop a third order conservative Lagrangian type scheme on curvilinear meshes for solving the Euler equations of compressible gas dynamics. The main purpose of this work is to demonstrate our claim in [3] that the accuracy degeneracy phenomenon observed for the high order Lagrangian type scheme is due to the error from the quadrilateral mesh with straight-line edges, which restricts the accuracy of the result-ing scheme to at most second order. The accuracy test given in this paper shows that the third order Lagrangian type scheme can actually obtain uniformly third order ac-curacy even on distorted meshes by using curvilinear meshes. Numerical examples are also presented to verify the performance of the third order scheme on curvilinear meshes in terms of resolution for discontinuities and non-oscillatory properties.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Based on the total Lagrangian kinematical description, a discontinuous Galerkin (DG) discretization of the gas dynamics equations is developed for two-dimensional fluid flows on general unstructured grids. Contrary to the updated Lagrangian formulation, which refers to the current moving configuration of the flow, the total Lagrangian formulation refers to the fixed reference configuration, which is usually the initial one. In this framework, the Lagrangian and Eulerian descriptions of the kinematical and the physical variables are related by means of the Piola transformation. Here, we describe a cell-centered high-order DG discretization of the physical conservation laws. The geometrical conservation law, which governs the time evolution of the deformation gradient, is solved by means of a finite element discretization. This approach allows to satisfy exactly the Piola compatibility condition. Regarding the DG approach, it relies on the use of a polynomial space approximation which is spanned by a Taylor basis. The main advantage in using this type of basis relies on its adaptability regardless the shape of the cell. The numerical fluxes at the cell interfaces are computed employing a node-based solver which can be viewed as an approximate Riemann solver. We present numerical results to illustrate the robustness and the accuracy up to third-order of our DG method. First, we show its ability to accurately capture geometrical features of a flow region employing curvilinear grids. Second, we demonstrate the dramatic improvement in symmetry preservation for radial flows.
    Journal of Computational Physics 11/2014; 276:188–234. DOI:10.1016/ · 2.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We develop a new cell-centered control volume Lagrangian scheme for solving Euler equations of compressible gas dynamics in cylindrical coordinates. The scheme is designed to be able to preserve one-dimensional spherical symmetry in a two-dimensional cylindrical geometry when computed on an equal-angle-zoned initial grid. Unlike many previous area-weighted schemes that possess the spherical symmetry property, our scheme is discretized on the true volume and it can preserve the conservation property for all the conserved variables including density, momentum and total energy. Several two-dimensional numerical examples in cylindrical coordinates are presented to demonstrate the performance of the scheme in terms of symmetry, accuracy and non-oscillatory properties.
    Journal of Computational Physics 09/2010; 229:7191-7206. DOI:10.1016/ · 2.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this paper, we explore the Lax–Wendroff (LW) type time discretization as an alternative procedure to the high order Runge–Kutta time discretization adopted for the high order essentially non-oscillatory (ENO) Lagrangian schemes developed in [3,5]. The LW time discretization is based on a Taylor expansion in time, coupled with a local Cauchy–Kowalewski procedure to utilize the partial differential equation (PDE) repeatedly to convert all time derivatives to spatial derivatives, and then to discretize these spatial derivatives based on high order ENO reconstruction. Extensive numerical examples are presented, for both the second-order spatial discretization using quadrilateral meshes [3] and third-order spatial discretization using curvilinear meshes [5]. Comparing with the Runge–Kutta time discretization procedure, an advantage of the LW time discretization is the apparent saving in computational cost and memory requirement, at least for the two-dimensional Euler equations that we have used in the numerical tests.
    Journal of Computational Physics 12/2009; 228:8872-8891. DOI:10.1016/ · 2.49 Impact Factor


Available from