Ev3: A Library for Symbolic Computation in C++ using n-ary Trees



Ev3 is a callable C++ library for performing symbolic computation (calculation of symbolic derivatives and various expression simplification). The purpose of this library is to furnish a fast means to use symbolic derivatives to third-party scientific software (e.g. nonlinear optimization, solution of nonlinear equations). It is small, easy to interface, even reasonably easy to change; it is written in C++ and the source code is available. One feature that makes Ev3 very efficient in algebraic manipulation is that the data structures are based on n-ary trees.

Download full-text


Available from: Leo Liberti,
1 Follower
105 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: If a mathematical program has many symmetric optima, solving it via Branch-and-Bound techniques often yields search trees of disproportionate sizes; thus, finding and exploiting symmetries is an important task. We propose a method for automatically finding the formulation group of any given Mixed-Integer Nonlinear Program, and for reformulating the problem by means of static symmetry breaking constraints. The reformulated problem—which is likely to have fewer symmetric optima—can then be solved via standard Branch-and-Bound codes such as CPLEX (for linear programs) and Couenne (for nonlinear programs). Our computational results include formulation group tables for the MIPLib3, MIPLib2003, GlobalLib and MINLPLib instance libraries and solution tables for some instances in the aforementioned libraries. KeywordsGroup–Symmetry–Mixed integer nonlinear programming–Branch and bound
    Mathematical Programming 02/2010; 131(1):273-304. DOI:10.1007/s10107-010-0351-0 · 1.80 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A large number of problems in ab-initio quantum chemistry involve finding the global minimum of the total system energy. These problems are traditionally solved by numerical approaches equivalent to local optimization. While these approaches are relatively efficient, they do not provide guarantees of global optimality unless a starting point sufficiently close to the global minimum is known apriori. Due to the enormous amount of computational effort required to solve these problems, more mathematically rigorous alternatives have so far received very little attention. Taking the above issue into consideration, this paper explores the use of deterministic global optimization in the context of Hartree-Fock theory, an important mathematical model applied in many quantum chemistry methods. In particular, it presents a general purpose approach for generating linear relaxations for problems arising from Hartree-Fock theory. This was then implemented as an extension to the ${{\tt COUENNE}}$ (Convex Over and Under ENvelopes for Nonlinear Estimation) branch and bound mixed integer non-linear programs solver. Proof of concept calculations that simultaneously optimise the orbital coefficients and the location of the nuclei in closed-shell Hartree-Fock calculations are presented and discussed.
    Journal of Global Optimization 06/2013; 56(2). DOI:10.1007/s10898-012-9868-5 · 1.29 Impact Factor