Improvement on spherical symmetry in two-dimensional cylindrical coordinates for a class of control volume Lagrangian schemes

Institute of Applied Physics and Computational Mathematics, 100088, Beijing, China; Division of Applied Mathematics, Brown University, 02912, Providence, RI

ABSTRACT In [14], Maire developed a class of cell-centered Lagrangian schemes for solving Euler equations of compressible gas dynamics in cylindrical coordinates. These schemes use a node-based discretization of the numerical fluxes. The control volume version has several distinguished properties, including the conservation of mass, momentum and total energy and compatibility with the geometric conservation law (GCL). However it also has a lim-itation in that it cannot preserve spherical symmetry for one-dimensional spherical flow. An alternative is also given to use the first order area-weighted approach which can ensure spherical symmetry, at the price of sacrificing conservation of momentum. In this paper, we apply the methodology proposed in our recent work [8] to the first order control volume scheme of Maire in [14] to obtain the spherical symmetry property. The modified scheme can preserve one-dimensional spherical symmetry in a two-dimensional cylindrical geometry when computed on an equal-angle-zoned initial grid, and meanwhile it maintains its original good properties such as conservation and GCL. Several two-dimensional numerical examples in cylindrical coordinates are presented to demonstrate the good performance of the scheme in terms of symmetry, non-oscillation and robustness properties.

0 0
1 Bookmark
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Lagrangian methods are widely used in many fields for multi-material compressible flow simulations such as in astrophysics and inertial confinement fusion (ICF), due to their dis-tinguished advantage in capturing material interfaces automatically. In some of these ap-plications, multiple internal energy equations such as those for electron, ion and radiation are involved. In the past decades, several staggered-grid based Lagrangian schemes have been developed which are designed to solve the internal energy equation directly. These schemes can be easily extended to solve problems with multiple internal energy equations. However such schemes are typically not conservative for the total energy. Recently, signif-icant progress has been made in developing cell-centered Lagrangian schemes which have several good properties such as conservation for all the conserved variables and easiness for remapping. However, these schemes are commonly designed to solve the Euler equations in the form of the total energy, therefore they cannot be directly applied to the solution of either the single internal energy equation or the multiple internal energy equations without significant modifications. Such modifications, if not designed carefully, may lead to the loss of some of the nice properties of the original schemes such as conservation of the total energy. In this paper, we establish an equivalency relationship between the cell-centered discretiza-tions of the Euler equations in the forms of the total energy and of the internal energy. By a carefully designed modification in the implementation, the cell-centered Lagrangian scheme can be used to solve the compressible fluid flow with one or multiple internal energy equa-tions and meanwhile it does not lose its total energy conservation property. An advantage of this approach is that it can be easily applied to many existing large application codes which are based on the framework of solving multiple internal energy equations. Several two dimensional numerical examples for both Euler equations and three-temperature hydrody-namic equations in cylindrical coordinates are presented to demonstrate the performance of the scheme in terms of symmetry preserving, accuracy and non-oscillatory performance.


Available from

Juan Cheng