HIV-1 envelope trimer elicits more potent neutralizing antibody responses than monomeric gp120.

Division of Molecular Medicine, Children's Hospital, Boston, MA 02115, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 07/2012; 109(30):12111-6. DOI: 10.1073/pnas.1204533109
Source: PubMed

ABSTRACT HIV-1 envelope glycoprotein is the primary target for HIV-1-specific antibodies. The native HIV-1 envelope spike on the virion surface is a trimer, but trimeric gp140 and monomeric gp120 currently are believed to induce comparable immune responses. Indeed, most studies on the immunogenicity of HIV-1 envelope oligomers have revealed only marginal improvement over monomers. We report here that suitably prepared envelope trimers have nearly all the antigenic properties expected for native viral spikes. These stable, rigorously homogenous trimers have antigenic properties markedly different from those of monomeric gp120s derived from the same sequences, and they induce potent neutralizing antibody responses for a cross-clade set of tier 1 and tier 2 viruses with titers substantially higher than those elicited by the corresponding gp120 monomers. These results, which demonstrate that there are relevant immunologic differences between monomers and high-quality envelope trimers, have important implications for HIV-1 vaccine development.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recombinant soluble, cleaved HIV-1 envelope glycoprotein SOSIP.664 gp140 trimers based on the subtype A BG505 sequence are being studied structurally and tested as immunogens in animals. For these trimers to become a vaccine candidate for human trials, they would need to be made in appropriate amounts at an acceptable quality. Accomplishing such tasks by transient transfection is likely to be challenging. The traditional way to express recombinant proteins in large amounts is via a permanent cell line, usually of mammalian origin. Making cell lines that produce BG505 SOSIP.664 trimers requires the co-expression of the Furin protease to ensure that the cleavage site between the gp120 and gp41 subunits is fully utilized. We designed a vector capable of expressing Env and Furin, and used it to create Stable 293 T and CHO Flp-InTMcell lines through site-specific recombination. Both lines produce high quality, cleaved trimers at yields of up to 12-15 mg per 1 x 109 cells. Trimer expression at such levels was maintained for up to 30 days (10 passages) after initial seeding and was consistently superior to what could be achieved by transient transfection. Electron microscopy studies confirm that the purified trimers have the same native-like appearance as those derived by transient transfection and used to generate high-resolution structures. They also have appropriate antigenic properties, including the presentation of the quaternary epitope for the broadly neutralizing antibody PGT145. The BG505 SOSIP.664 trimer-expressing cell lines yield proteins of an appropriate quality for structural studies and animal immunogenicity experiments. The methodology is suitable for making similar lines under Good Manufacturing Practice conditions, to produce trimers for human clinical trials. Moreover, any env gene can be incorporated into this vector system, allowing the manufacture of SOSIP trimers from multiple genotypes, either by transient transfection or from stable cell lines.
    Retrovirology 04/2014; 11(1):33. · 5.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The recent identification of a novel human coronavirus responsible of a SARS-like illness in the Middle-East a decade after the SARS pandemic, demonstrates that reemergence of a SARS-like coronavirus from an animal reservoir remains a credible threat. Because SARS is contracted by aerosolized contamination of the respiratory tract, a vaccine inducing mucosal long-term protection would be an asset to control new epidemics. To this aim, we generated live attenuated recombinant measles vaccine (MV) candidates expressing either the membrane-anchored SARS-CoV spike (S) protein or its secreted soluble ectodomain (Ssol). In mice susceptible to measles virus, recombinant MV expressing the anchored full-length S induced the highest titers of neutralizing antibodies and fully protected immunized animals from intranasal infectious challenge with SARS-CoV. As compared to immunization with adjuvanted recombinant Ssol protein, recombinant MV induced stronger and Th1-biased responses, a hallmark of live attenuated viruses and a highly desirable feature for an antiviral vaccine.
    Virology 01/2014; s 452–453:32–41. · 3.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Immunogens based on the human immunodeficiency virus type-1 (HIV-1) Envelope (Env) glycoprotein have to date failed to elicit potent and broadly neutralizing antibodies against diverse HIV-1 strains. An understudied area in the development of HIV-1 Env-based vaccines is the impact of various adjuvants on the stability of the Env immunogen and the magnitude of the induced humoral immune response. We hypothesize that optimal adjuvants for HIV-1 gp140 Env trimers will be those with high potency but also those that preserve structural integrity of the immunogen and those that have a straightforward path to clinical testing. In this report, we systematically evaluate the impact of 12 adjuvants on the stability and immunogenicity of a clade C (CZA97.012) HIV-1 gp140 trimer in guinea pigs and a subset in non-human primates. Oil-in-water emulsions (GLA-emulsion, Ribi, Emulsigen) resulted in partial aggregation and loss of structural integrity of the gp140 trimer. In contrast, alum (GLA-alum, Adju-Phos, Alhydrogel), TLR (GLA-aqueous, CpG, MPLA), ISCOM (Matrix M) and liposomal (GLA-liposomes, virosomes) adjuvants appeared to preserve structural integrity by size exclusion chromatography. However, multiple classes of adjuvants similarly augmented Env-specific binding and neutralizing antibody responses in guinea pigs and non-human primates.
    Vaccine 02/2014; · 3.77 Impact Factor

Full-text (2 Sources)

1 Download
Available from
May 22, 2014