Identification of three MAPKKKs forming a linear signaling pathway leading to programmed cell death in.

BMC Plant Biology (Impact Factor: 3.94). 07/2012; 12(1):103. DOI: 10.1186/1471-2229-12-103
Source: PubMed

ABSTRACT Background
The mitogen-activated protein kinase (MAPK) cascade is an evolutionarily ancient mechanism of signal transduction found in eukaryotic cells. In plants, MAPK cascades are associated with responses to various abiotic and biotic stresses such as plant pathogens. MAPK cascades function through sequential phosphorylation: MAPK kinase kinases (MAPKKKs) phosphorylate MAPK kinases (MAPKKs), and phosphorylated MAPKKs phosphorylate MAPKs. Of these three types of kinase, the MAPKKKs exhibit the most divergence in the plant genome. Their great diversity is assumed to allow MAPKKKs to regulate many specific signaling pathways in plants despite the relatively limited number of MAPKKs and MAPKs. Although some plant MAPKKKs, including the MAPKKKα of Nicotiana benthamiana (NbMAPKKKα), are known to play crucial roles in plant defense responses, the functional relationship among MAPKKK genes is poorly understood. Here, we performed a comparative functional analysis of MAPKKKs to investigate the signaling pathway leading to the defense response.

We cloned three novel MAPKKK genes from N. benthamiana: NbMAPKKKβ, NbMAPKKKγ, and NbMAPKKKε2. Transient overexpression of full-length NbMAPKKKβ or NbMAPKKKγ or their kinase domains in N. benthamiana leaves induced hypersensitive response (HR)-like cell death associated with hydrogen peroxide production. This activity was dependent on the kinase activity of the overexpressed MAPKKK. In addition, virus-induced silencing of NbMAPKKKβ or NbMAPKKKγ expression significantly suppressed the induction of programmed cell death (PCD) by viral infection. Furthermore, in epistasis analysis of the functional relationships among NbMAPKKKβ, NbMAPKKKγ, and NbMAPKKKα (previously shown to be involved in plant defense responses) conducted by combining transient overexpression analysis and virus-induced gene silencing, silencing of NbMAPKKKα suppressed cell death induced by the overexpression of the NbMAPKKKβ kinase domain or of NbMAPKKKγ, but silencing of NbMAPKKKβ failed to suppress cell death induced by the overexpression of NbMAPKKKα or NbMAPKKKγ. Silencing of NbMAPKKKγ suppressed cell death induced by the NbMAPKKKβ kinase domain but not that induced by NbMAPKKKα.

These results demonstrate that in addition to NbMAPKKKα, NbMAPKKKβ and NbMAPKKKγ also function as positive regulators of PCD. Furthermore, these three MAPKKKs form a linear signaling pathway leading to PCD; this pathway proceeds from NbMAPKKKβ to NbMAPKKKγ to NbMAPKKKα.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mitogen-activated protein kinase cascades are key players in plant immune signaling pathways, transducing the perception of invading pathogens into effective defense responses. Plant pathogenic oomycetes, such as the Irish potato famine pathogen Phytophthora infestans, deliver RXLR effector proteins to plant cells to modulate host immune signaling and promote colonization. Our understanding of the molecular mechanisms by which these effectors act in plant cells is limited. Here, we report that the P. infestans RXLR effector PexRD2 interacts with the kinase domain of MAPKKKε, a positive regulator of cell death associated with plant immunity. Expression of PexRD2 or silencing MAPKKKε in Nicotiana benthamiana enhances susceptibility to P. infestans. We show that PexRD2 perturbs signaling pathways triggered by or dependent on MAPKKKε. By contrast, homologs of PexRD2 from P. infestans had reduced or no interaction with MAPKKKε and did not promote disease susceptibility. Structure-led mutagenesis identified PexRD2 variants that do not interact with MAPKKKε and fail to support enhanced pathogen growth or perturb MAPKKKε signaling pathways. Our findings provide evidence that P. infestans RXLR effector PexRD2 has evolved to interact with a specific host MAPKKK to perturb plant immunity-related signaling.
    The Plant Cell 03/2014; DOI:10.1105/tpc.113.120055 · 9.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The ubiquitin (Ub)-conjugating enzyme, Ubc13, has been known to be involved in error-free DNA damage tolerance (or post-replication repair) via catalyzing Lys63-linked polyubiquitin chains formation together with a Ubc variant. However, its functions remain largely unknown in plant species, especially in monocotyledons. In this study, we cloned a Ub-conjugating enzyme, OsUbc13, that shares the conserved domain of Ubc with AtUBC13B in Oryza sativa L., which encodes a protein of 153 amino acids; the deduced sequence shares high similarities with other homologs. Real-time quantitative polymerase chain reaction (PCR) indicated that OsUbc13 transcripts could be detected in all tissues examined, and the expression level was higher in palea, pistil, stamen, and leaf, and lower in root, stem, and lemma; the expression of OsUbc13 was induced by low temperature, methylmethane sulfate (MMS), and H2O2, but repressed by mannitol, abscisic acid (ABA), and NaCl. OsUbc13 was probably localized in the plasma and nuclear membranes. About 20 proteins, which are responsible for the positive yeast two-hybrid interaction of OsUbc13, were identified. These include the confirmed OsVDAC (correlated with apoptosis), OsMADS1 (important for development of floral organs), OsB22EL8 (related to reactive oxygen species (ROS) scavenging and DNA protection), and OsCROC-1 (required for formation of Lys63 polyubiquitylation and error-free DNA damage tolerance). The molecular characterization provides a foundation for the functional study of OsUbc13.
    Journal of Zhejiang University SCIENCE B 07/2014; 15(7):624-37. DOI:10.1631/jzus.B1300273 · 1.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mitogen-activated protein kinase (MAPK) cascades have important functions in plant growth, development, and response to various stresses. The MAPKK and MAPKKK gene families in tomato have never been systematically analyzed. In this study, we performed a genome-wide analysis of the MAPKK and MAPKKK gene families in tomato and identified 5 MAPKK genes and 89 MAPKKK genes. Phylogenetic analyses of the MAPKK and MAPKKK gene families showed that all the MAPKK genes formed four groups (groups A, B, C, and D), whereas all the MAPKKK genes were classified into three subfamilies, namely, MEKK, RAF, and ZIK. Evolutionary analysis showed that whole genome or chromosomal segment duplications were the main factors responsible for the expansion of the MAPKK and MAPKKK gene families in tomato. Quantitative real-time RT-PCR analysis showed that the majority of MAPKK and MAPKKK genes were expressed in all tested organs with considerable differences in transcript levels indicating that they might be constitutively expressed. However, the expression level of most of these genes changed significantly under heat, cold, drought, salt, and Pseudomonas syringae treatment. Furthermore, their expression levels exhibited significant changes in response to salicylic acid and indole-3-acetic acid treatment, implying that these genes might have important roles in the plant hormone network. Our comparative analysis of the MAPKK and MAPKKK families would improve our understanding of the evolution and functional characterization of MAPK cascades in tomato.
    PLoS ONE 07/2014; 9(7):e103032. DOI:10.1371/journal.pone.0103032 · 3.53 Impact Factor

Preview (2 Sources)

Available from