Extrathymic Generation of Regulatory T Cells in Placental Mammals Mitigates Maternal-Fetal Conflict

Howard Hughes Medical Institute and Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
Cell (Impact Factor: 33.12). 07/2012; 150(1):29-38. DOI: 10.1016/j.cell.2012.05.031
Source: PubMed

ABSTRACT Regulatory T (Treg) cells, whose differentiation and function are controlled by X chromosome-encoded transcription factor Foxp3, are generated in the thymus (tTreg) and extrathymically (peripheral, pTreg), and their deficiency results in fatal autoimmunity. Here, we demonstrate that a Foxp3 enhancer, conserved noncoding sequence 1 (CNS1), essential for pTreg but dispensable for tTreg cell generation, is present only in placental mammals. CNS1 is largely composed of mammalian-wide interspersed repeats (MIR) that have undergone retrotransposition during early mammalian radiation. During pregnancy, pTreg cells specific to a model paternal alloantigen were generated in a CNS1-dependent manner and accumulated in the placenta. Furthermore, when mated with allogeneic, but not syngeneic, males, CNS1-deficient females showed increased fetal resorption accompanied by increased immune cell infiltration and defective remodeling of spiral arteries. Our results suggest that, during evolution, a CNS1-dependent mechanism of extrathymic differentiation of Treg cells emerged in placental animals to enforce maternal-fetal tolerance.

Download full-text


Available from: Steven Zvi Josefowicz, Jun 20, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Regulatory T (Treg) cells expressing the transcription factor forkhead box P3 (FoxP3) control immune responses and prevent autoimmunity. Treatment with glucocorticoids (GCs) has been shown to increase Treg cell frequency, but the mechanisms of their action on Treg cell induction are largely unknown. Here, we report that glucocorticoid-induced leucine zipper (GILZ), a protein induced by GCs, promotes Treg cell production. In mice, GILZ overexpression causes an increase in Treg cell number, whereas GILZ deficiency results in impaired generation of peripheral Treg cells (pTreg), associated with increased spontaneous and experimental intestinal inflammation. Mechanistically, we found that GILZ is required for GCs to cooperate with TGF-β in FoxP3 induction, while it enhances TGF-β signaling by binding to and promoting Smad2 phosphorylation and activation of FoxP3 expression. Thus, our results establish an essential GILZ-mediated link between the anti-inflammatory action of GCs and the regulation of TGF-β-dependent pTreg production.
    Cell Reports 04/2014; 7(2). DOI:10.1016/j.celrep.2014.03.004 · 7.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Implantation of the fertilized egg into the maternal uterus depends on the fine balance between inflammatory and anti-inflammatory processes. Whilst regulatory T cells (Tregs) are reportedly involved in protection of allogeneic fetuses against rejection by the maternal immune system, their role for pregnancy to establish, e.g., blastocyst implantation, is not clear. By using 2-photon imaging we show that Foxp3(+) cells accumulated in the mouse uterus during the receptive phase of the estrus cycle. Seminal fluid further fostered Treg expansion. Depletion of Tregs in two Foxp3.DTR-based models prior to pairing drastically impaired implantation and resulted in infiltration of activated T effector cells as well as in uterine inflammation and fibrosis in both allogeneic and syngeneic mating combinations. Genetic deletion of the homing receptor CCR7 interfered with accumulation of Tregs in the uterus and implantation indicating that homing of Tregs to the uterus was mediated by CCR7. Our results demonstrate that Tregs play a critical role in embryo implantation by preventing the development of a hostile uterine microenvironment.
    Frontiers in Immunology 06/2013; 4:158. DOI:10.3389/fimmu.2013.00158
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Since the discovery of interleukin-10 (IL-10) in the 1980s, a large body of work has led to its recognition as a pleiotropic immunomodulatory cytokine that affects both the innate and adaptive immune systems. IL-10 is produced by a wide range of cell types, but for the purposes of this review we shall focus on IL-10 secreted by CD4(+) T cells. Here we describe the importance of IL-10 as a mediator of suppression used by both FoxP3(+) and FoxP3(-) T regulatory cells. Moreover, we discuss the molecular events leading to the induction of IL-10 secretion in T helper cell subsets, where it acts as a pivotal negative feedback mechanism. Finally we discuss how a greater understanding of this principle has allowed for the design of more efficient, antigen-specific immunotherapy strategies to exploit this natural phenomenon clinically.
    Frontiers in Immunology 05/2013; 4:129. DOI:10.3389/fimmu.2013.00129