Article

Nanoengineered micro gold shells for LDI-TOF analysis of small molecules.

Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea.
Analytica chimica acta (Impact Factor: 4.31). 07/2012; 736:1-6. DOI: 10.1016/j.aca.2012.05.040
Source: PubMed

ABSTRACT This paper reports on analyses of small molecules with laser desorption/ionization time of flight (LDI-TOF) mass spectrometry (MS) using nanostructure-embedded micro gold shells (μAuSs). The mass analyses of amino acids, sugars, peptides, and their mixtures gave apparent mass peaks for analytes without any significant background interferences. μAuSs afforded a better limit of detection (LOD) and a higher signal-to-noise ratio than gold nanoparticles, which are commonly used for LDI-TOF analysis of small molecules. We believe μAuSs have advantages in terms of simplicity, detection limit, and reproducibility, and therefore, they constitute a significant addition to the organic matrix-free analytical tools that are currently in wide use.

0 Bookmarks
 · 
105 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: This review summarizes various approaches for the analysis of low molecular weight (LMW) compounds by different laser desorption/ionization mass spectrometry techniques (LDI-MS). It is common to use an agent to assist the ionization, and small molecules are normally difficult to analyze by, e.g., matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS) using the common matrices available today, because the latter are generally small organic compounds themselves. This often results in severe suppression of analyte peaks, or interference of the matrix and analyte signals in the low mass region. However, intrinsic properties of several LDI techniques such as high sensitivity, low sample consumption, high tolerance towards salts and solid particles, and rapid analysis have stimulated scientists to develop methods to circumvent matrix-related issues in the analysis of LMW molecules. Recent developments within this field as well as historical considerations and future prospects are presented in this review.
    Analytical and Bioanalytical Chemistry 12/2013; · 3.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Analytical applications often require rapid measurement of compounds from complex sample mixtures. High-speed mass spectrometry approaches frequently utilize techniques based on direct ionization of the sample by laser irradiation, mostly by means of matrix-assisted laser desorption/ionization (MALDI). Compounds of low molecular weight are difficult to analyze by MALDI, however, because of severe interferences in the low m/z range from the organic matrix used for desorption/ionization. In recent years, surface-assisted laser desorption/ionization (SALDI) techniques have shown promise for small molecule analysis, due to the unique properties of nanostructured surfaces, in particular, the lack of a chemical background in the low m/z range and enhanced production of analyte ions by SALDI. This short review article presents a summary of the most promising recent developments in SALDI materials for MS analysis of low molecular weight analytes, with emphasis on nanostructured materials based on metals and semiconductors.
    The Analyst 10/2013; · 4.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Bcr/Abl chimeric protein was captured by two antibodies, anti-Bcr on gold nanoparticles (AuNPs) and anti-Abl on a biochip, in a sandwich assay format. The presence of the Bcr/Abl in cells was then verified by amplified LDI-TOF MS signals, and relative amounts were quantified using AuNPs coated with deuterated alkanethiols as an internal standard.
    Chemical Communications 03/2014; · 6.38 Impact Factor