(-)-Epigallocatechin gallate inhibits endotoxin-induced expression of inflammatory cytokines in human cerebral microvascular endothelial cells.

The Center for Animal Experiment/Animal Biosafety Level III Laboratory, Wuhan University Wuhan, Hubei 430071, People's Republic of China.
Journal of Neuroinflammation (Impact Factor: 4.9). 07/2012; 9:161. DOI: 10.1186/1742-2094-9-161
Source: PubMed

ABSTRACT (-)-Epigallocatechin gallate (EGCG) is a major polyphenol component of green tea that has antioxidant activities. Lipopolysaccharide (LPS) induces inflammatory cytokine production and impairs blood-brain barrier (BBB) integrity. We examined the effect of EGCG on LPS-induced expression of the inflammatory cytokines in human cerebral microvascular endothelial cells (hCMECs) and BBB permeability.
The expression of TNF-α, IL-1β and monocyte chemotactic protein-1 (MCP-1/CCL2) was determined by quantitative real time PCR (qRT-PCR) and ELISA. Intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule (VCAM) in hCMECs were examined by qRT-PCR and Western blotting. Monocytes that adhered to LPS-stimulated endothelial cells were measured by monocyte adhesion assay. Tight junctional factors were detected by qRT-PCR (Claudin 5 and Occludin) and immunofluorescence staining (Claudin 5 and ZO-1). The permeability of the hCMEC monolayer was determined by fluorescence spectrophotometry of transmembrane fluorescin and transendothelial electrical resistance (TEER). NF-kB activation was measured by luciferase assay.
EGCG significantly suppressed the LPS-induced expression of IL-1β and TNF-α in hCMECs. EGCG also inhibited the expression of MCP-1/CCL2, VCAM-1 and ICAM-1. Functional analysis showed that EGCG induced the expression of tight junction proteins (Occludin and Claudin-5) in hCMECs. Investigation of the mechanism showed that EGCG had the ability to inhibit LPS-mediated NF-κB activation. In addition, 67-kD laminin receptor was involved in the anti-inflammatory effect of EGCG.
Our results demonstrated that LPS induced inflammatory cytokine production in hCMECs, which could be attenuated by EGCG. These data indicate that EGCG has a therapeutic potential for endotoxin-mediated endothelial inflammation.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Background Green tea polyphenol epigallocatechin-3-gallate (EGCG) has the potential to impact a variety of inflammation-related diseases; however, the anti-inflammatory action of EGCG in endothelial cells has not been understood. Recently, we demonstrated that the 67-kDa laminin receptor (67LR) acts as a cell-surface EGCG receptor. Aim This research was carried out to clarify the molecular basis for the down-regulation of toll-like receptor 4 (TLR4) signal transduction by EGCG in lipopolysaccharide (LPS)-stimulated endothelial cells. Results RNAi-mediated silencing of 67LR resulted in an abrogation of the inhibitory action of EGCG on the LPS-induced activation of downstream signaling pathways. Also, we found that EGCG induced a rapid upregulation of Toll-interacting protein (Tollip), a negative regulator of TLR signaling, through 67LR in endothelial cells. RNAi-mediated silencing of Tollip impaired the TLR4 signaling inhibitory activity of EGCG. Additionally, silencing of Tollip resulted in an abrogation of the inhibitory action of EGCG on the LPS-induced expressions of cell-associated adhesion molecules, such as ICAM-1 and VCAM-1. Conclusion Taken together, these novel findings provide new insights into an understanding of negative regulatory mechanisms of the TLR4 signaling pathway and effective therapeutic intervention for the treatment of inflammatory disease.
    Immunobiology 01/2014; DOI:10.1016/j.imbio.2014.07.010 · 3.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Epigallocatechin-3-gallate (EGCG) is a major polyphenol component of green tea (Camellia sinensis) and demonstrates anti-oxidant, anticancer and anti-inflammatory properties. EGCG has been shown to protect retinal pigment epithelium (RPE) against oxidative stress-induced cell death. The pathogenesis of diseases in the retina is usually initiated by local inflammation at the RPE cell layer, and inflammation is mostly associated with leukocyte migration and the secretion of pro-inflammatory cytokines. Whether EGCG can modulate the cytokine-induced inflammatory response of RPE, particularly leukocyte migration, has not been clearly elucidated, and was therefore the objective of this study. ARPE-19 cells were cultured with different concentrations of TNF-α in the presence or absence of EGCG to different time points. Intracellular reactive oxygen species (ROS) levels were determined. Intercellular adhesion molecule (ICAM)-1 and phosphor-NF-κB and IκB expression were determined by Western blot analysis. Phosphor-NF-κB nuclear translocation and monocyte-RPE adhesion were investigated using immunofluorescence confocal laser scanning microscopy. Scanning electron microscopy (SEM) was carried out to further determine the ultrastructure of monocyte-RPE adhesion. The results demonstrated that TNF-α modulated inflammatory effects in ARPE-19 by induction of ROS and up-regulation of ICAM-1 expression. Moreover, TNF-α-induced phosphor-NF-κB nuclear translocation, increased phosphor-NF-κB expression and IκB degradation, and increased the degree of monocyte-RPE adhesion. Pretreating the cells with EGCG ameliorated the inflammatory effects of TNF-α. The results indicated that EGCG significantly exerts anti-inflammatory effects in ARPE-19 cells, partly as a suppressor of TNF-α signaling and that the inhibition was mediated via the NF-κB pathway.
    The American Journal of Chinese Medicine 02/2015; 43(01):1-17. DOI:10.1142/S0192415X1550007X · 2.63 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Blood-brain barrier (BBB) dysfunction is a key event in the development of many central nervous system (CNS) diseases, such as septic encephalopathy and stroke. 4,4’-Diaminodiphenylsulfone (DDS, Dapsone) has displayed neuroprotective effect, but whether DDS has protective role on BBB integrity is not clear. This study was designed to examine the effect of DDS on lipopolysaccharide (LPS)-induced BBB disruption and oxidative stress in brain vessels. Using in vivo multiphoton imaging, we found that DDS administration significantly restored BBB integrity compromised by LPS. DDS also increased the expression of tight junction proteins occludin, zona occludens-1 (ZO-1) and claudin-5 in brain vessels. Level of reactive oxygen species (ROS) was reduced by DDS treatment, which may due to decreased nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity and NOX2 expression. Our results showed that LPS-induced BBB dysfunction could be attenuated by DDS, indicated that DDS has a therapeutic potential for treating CNS infection and other BBB related diseases.
    Biochemical and Biophysical Research Communications 09/2014; DOI:10.1016/j.bbrc.2014.09.093 · 2.28 Impact Factor

Full-text (3 Sources)

Available from
May 15, 2014