Article

OWLGrEd: a UML Style Graphical Notation and Editor for OWL 2

12/2009; DOI: 10.1007/978-3-642-16101-8_9

ABSTRACT There have been several attempts to visualize OWL ontologies with UML style diagrams. Unlike ODM approach of defining a UML profile for OWL, we propose an extension to UML class diagrams (hard extension) that allows a more compact OWL visualization. The compactness is achieved through the native power of UML class diagrams extended with optional Manchester encoding for class expressions thus avoiding many explicit anonymous classes typical in ODM. We have implemented the proposed compact visualization in a UML style graphical editor for OWL 2. The editor contains a rich set of graphical layout algorithms for automatic ontology visualization, search facilities, graphical refactoring and interoperability with Protégé 4.

0 Bookmarks
 · 
117 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The presented tool uses a novel approach to explore and query a SPARQL endpoint. The tool is simple to use as a user needs only to enter an address of a SPARQL endpoint of one’s interest. The tool will extract and visualize graphically the data schema of the endpoint. The user will be able to overview the data schema and use it to construct a SPARQL query according to the data schema. The tool can be downloaded from http://viziquer.lumii.lv. There is also additional information and help on how to use it in practice.
    The Semanic Web: Research and Applications - 8th Extended Semantic Web Conference, ESWC 2011, Heraklion, Crete, Greece, May 29 - June 2, 2011, Proceedings, Part II; 01/2011
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The paper presents an ongoing research that aims at OWL ontology authoring and verbalization using a deterministic controlled natural language (CNL) that would be as natural and intuitive as possible. Moreover, we focus on a multilingual CNL interface to OWL by considering both highly analytical and highly synthetic languages (namely, English and Latvian). We propose a flexible two-level translation approach that is enabled by the Grammatical Framework and that has allowed us to develop a more natural, but still predictable multilingual CNL on top of the widely used Attempto Controlled English (its subset for OWL, ACE-OWL). This has also allowed us to exploit the readily available ACE parser and verbalizer not only for the modified and extended version of ACE-OWL, but also for the corresponding controlled Latvian.
    Proceedings of the 9th International Conference on Computational Semantics (IWCS). 01/2011;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The research subject of this doctoral thesis is the formal, automatic grammatical and semantic analysis of the highly inflective, synthetic Latvian language. A novel hybrid grammar model is proposed, which is especially suited for languages with relatively free word order. The model has been tested on a syntactically restricted subset of Latvian, covering various constructions that can be found in simple extended sentences. The problem is then restricted also from the semantic perspective by developing a deterministic, yet natural subset of Latvian (accompanied with its parser and generator), whose semantics is defined in description logic. The author shows that the analysis of the information structure of a sentence is a reliable way to unambiguously identify the implicit quantifiers and coreferences in OWL terminological axioms, SWRL inference rules and SPARQL integrity queries that are given in a form of a controlled synthetic language. A two-level translation approach is proposed and implemented in a prototype that demonstrates the semantically precise machine translation from controlled Latvian to OWL (and vice versa) by using an existing controlled English as an interlingua and by reusing its readily available tools. In addition, a semi-automatic method is proposed to enable controlled, systematic polysemy and word sense disambiguation in controlled language texts, simultaneously dealing with the OWL ontology merging problem.
    12/2010, Degree: Dr. sc. comp.

Full-text (4 Sources)

View
9 Downloads
Available from
Jun 2, 2014