Article

An interhemispheric model of artificial ionospheric ducts

Radio Science (Impact Factor: 1). 08/2006; 41. DOI: 10.1029/2005RS003371

ABSTRACT 1] A duct in Earth's ionosphere is characterized by density gradients perpendicular to the magnetic field, which enhance refractive indices and act as waveguides to whistler-range waves. Interhemispheric ducts along magnetic field lines have implications for the transmission of ELF radio waves across the globe. Strong HF ionospheric heating has been shown to create a depletion of electrons at the heated region and could lead to a pressure perturbation that propagates along the entire magnetic field line, potentially forming an artificial duct. Here we present results from an ionospheric numerical model used to study the effects of localized HF heating on an interhemispheric magnetic flux tube. The existing Sami2 is Another Model of the Ionosphere (SAMI2) ionospheric model has been modified to include a flexible source of strong HF heating that can be varied to mimic the fluctuations in HF heating efficiencies and ionospheric conditions. Our parametric study includes varying the heating source intensity and location along the magnetic field line, revealing both linear and nonlinear relationships connecting these source parameters to maximum pressure, temperature, and density perturbations; propagation velocity of density perturbations; and characteristic heating and cooling times of the irradiated region. After a transient state, the duct structure achieves a quasi-steady state, showing electron depletion at the heated region and density enhancements in the regions just below and above the heated region. The density perturbations propagate deep inside the plasmasphere to the conjugate F 2 peak, with density enhancements along the traveling pulse boundary. The possibility of generating interhemispheric ducts is discussed.

0 Bookmarks
 · 
108 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: On 16 October 2009, the Detection of Electromagnetic Emissions Transmitted from Earthquake Regions (DEMETER) satellite observed VLF whistler wave activity coincident with an ionospheric heating experiment conducted at HAARP. At the same time, density measurements by DEMETER indicate the presence of multiple field-aligned enhancements. Using an electron MHD model, we show that the distribution of VLF power observed by DEMETER is consistent with the propagation of whistlers from the heating region inside the observed density enhancements. We also discuss other interesting features of this event, including coupling of the lower hybrid and whistler modes, whistler trapping in artificial density ducts, and the interference of whistlers waves from two adjacent ducts.
    Journal of Geophysical Research Atmospheres 10/2013; 118(1–8). · 3.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present results from numerical studies of whistler mode wave propagation in the Earth's ionosphere when artificially created plasma ducts are present. Using realistic density profiles from the SAMI2 ionospheric code, we solve the two-dimensional electron magnetohydrodynamics equations to study the trans-ionospheric propagation of artificially generated whistler waves at HAARP latitudes (L = 4.9). Both ducted and non-ducted propagation is considered, but only ducted whistlers are able to propagate without a significant reduction in wave amplitude. The conditions necessary for the trapping of waves in both high- and low-density ducts are discussed with particular attention paid to the practical accessibility of these parameter regimes.
    Journal of Geophysical Research Atmospheres 08/2012; 117(A8):8302-. · 3.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Conjugate heating effects associated with the upcoming Arecibo heater facility are studied using the NRL ionosphere model SAMI2. A density-dependent, localized heating source is included in the electron temperature equation to model ionospheric radiowave heating. Heating effects are examined as a function of the heating timing and the peak density of the unmodified ionosphere (through the F10.7 index). The simulation results suggest that field-aligned duct formation occur during periods of relatively low electron densities (e.g., during the night). The enhancement of the electron temperature and electron density in the conjugate topside ionosphere (˜500 km) could reach respective values of ˜5% and 25%. Heating losses associated with inelastic electron-neutral (N2) collisions primarily inhibit conjugate effects.
    Geophysical Research Letters 04/2012; 39(7):7103-. · 3.98 Impact Factor

Full-text (2 Sources)

Download
108 Downloads
Available from
Jun 1, 2014