The utility of ATF3 in distinguishing cutaneous squamous cell carcinoma among other cutaneous epithelial neoplasms

Department of Pathology, Section of Dermatopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
Journal of Cutaneous Pathology (Impact Factor: 1.56). 07/2012; 39(8):762-8. DOI: 10.1111/j.1600-0560.2012.01938.x
Source: PubMed

ABSTRACT The histopathologic distinction between benign and malignant cutaneous keratinocytic proliferations can pose a difficult diagnostic challenge - often with important clinical implications. Activating transcription factor 3 (ATF3) has emerged as a potential biomarker which may aid in the segregation of these lesions, and we hypothesize that ATF3 expression may be a specific marker of cutaneous squamous cell carcinoma (SCC). Using immunohistochemistry, we characterized ATF3 expression in a series of 126 cutaneous epithelial proliferations, including SCC (n = 27), basal cell carcinomas (BCC, n = 59), seborrheic keratoses with atypia (SK, n = 16), hyperplastic actinic keratoses (AK, n = 12) and prurigo nodularis cases (PN, n = 12). We showed strong, nuclear and/or nucleolar expression of ATF3 in a statistically significant number of cases of SCC compared to BCC, SK and PN. We conclude that ATF3 expression is a surrogate of malignancy (or pre-malignancy) in keratinocytic epithelial proliferations and thus helps distinguish SCC from other cutaneous epithelial neoplasms.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aim: ATF3, a member of the ATF/CREB family of transcription factors, has been found to be selectively induced by calcineurin/NFAT inhibition and to enhance keratinocyte tumor formation, although the precise role of ATF3 in human skin cancer and possible mechanisms remain unknown. Methods: In this study, clinical analysis of 30 skin cancer patients and 30 normal donors revealed that ATF3 was accumulated in skin cancer tissues. Functional assays demonstrated that ATF3 significantly promoted skin cancer cell proliferation. Results: Mechanically, ATF3 activated Stat3 phosphorylation in skin cancer cell through regulation of p53 expression. Moreover, the promotion effect of ATF3 on skin cancer cell proliferation was dependent on the p53-Stat3 signaling cascade. Conclusion: Together, the results indicate that ATF3 might promote skin cancer cell proliferation and enhance skin keratinocyte tumor development through inhibiting p53 expression and then activating Stat3 phosphorylation.
    Asian Pacific journal of cancer prevention: APJCP 12/2013; 14(12):7439-44. DOI:10.7314/APJCP.2013.14.12.7439 · 2.51 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study aimed to investigate the expression and significance of ATF-3 in laryngeal squamous cell carcinoma (LSCC). Expression of ATF-3 was examined using immunohistochemistry methods in samples from 83 cases of LSCC carcinoma. MTT assay was used to detect proliferation of Hep-2 cells after ATF-3 knocked down by siRNA lentivirus. A mouse model was used to investigate the inhibitive role of ATF-3 siRNA in LSCC xenografts. Realtime RCR was used to detect Cyclin D1 expression after ATF-3 downregulation in Hep-2 cells. The expression of ATF-3 was positively detected in all the 83 cases of LSCC cancer tissues while Only 4 cases of adjacent non-neoplastic tissues were detected with positive ATF-3 expression. The ATF-3 expression was statistically related with T stage, neck nodal metastasis, clinical stage and prognosis of LSCC. Both cell proliferation in vitro and tumor growth in vivo were suppressed after ATF-3 knockdown. Furthermore, the expression of Cyclin D1 was decreased after ATF-3 downregulation in Hep-2 cells. ATF-3 is involved in the progress of LSCC, and may provide clinical information for evaluation of prognosis of LSCC. The oncologic role of ATF-3 may be correlated with Cyclin D1 regulation.
    International journal of clinical and experimental pathology 01/2013; 6(10):2064-70. · 1.78 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Inhibition of histone deacetylase (HDAC) activity by HDAC inhibitors (HDACis) results in cancer cell growth inhibition, and HDACis have been revealed as potential anti-skin cancer agents. p21 is a cyclin-dependent kinase inhibitor and an essential regulator of growth inhibition. Recently, we reported that activating transcription factor 3 (ATF3) could significantly promote skin cancer cell growth. This study explored the relationship between ATF3 and HDACi-induced growth inhibition of epidermoid carcinoma cells. We found that trichostatin A (TSA) treatment inhibited cell growth in A431 epidermoid carcinoma cells in a dose-dependent manner. Simultaneously, p21 and ATF3 expression levels were upregulated and downregulated upon TSA stimulation, respectively. ATF3 overexpression promoted cell growth and downregulated p21 expression. In contrast, ATF3 depletion resulted in cell growth reduction and p21 transcriptional upregulation. More importantly, ATF3 overexpression partially antagonized TSA-induced growth inhibition and p21 activation. Collectively, these data demonstrate that ATF3 acts as an essential negative regulator of TSA-induced cell growth inhibition through interfering with TSA-induced p21 activation.
    Tumor Biology 11/2014; 36(3). DOI:10.1007/s13277-014-2618-1 · 2.84 Impact Factor

Nitin Chakravarti