Article

Community Health Workers Use Malaria Rapid Diagnostic Tests (RDTs) Safely and Accurately: Results of a Longitudinal Study in Zambia

Malaria Consortium, Maputo, Mozambique; Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; Malaria Consortium, Lusaka, Zambia; Zambia National Malaria Control Center, Lusaka, Zambia; Livingstone District Health Management Team, Livingstone, Zambia; World Health Organization, Lusaka, Zambia; Foundation for Innovative New Diagnostics (FIND), Geneva, Switzerland
The American journal of tropical medicine and hygiene (Impact Factor: 2.74). 07/2012; 87(1):57-63. DOI: 10.4269/ajtmh.2012.11-0800
Source: PubMed

ABSTRACT Malaria rapid diagnostic tests (RDTs) could radically improve febrile illness management in remote and low-resource populations. However, reliance upon community health workers (CHWs) remains controversial because of concerns about blood safety and appropriate use of artemisinin combination therapy. This study assessed CHW ability to use RDTs safely and accurately up to 12 months post-training. We trained 65 Zambian CHWs, and then provided RDTs, job-aids, and other necessary supplies for village use. Observers assessed CHW performance at 3, 6, and 12 months post-training. Critical steps performed correctly increased from 87.5% at 3 months to 100% subsequently. However, a few CHWs incorrectly read faint positive or invalid results as negative. Although most indicators improved or remained stable over time, interpretation of faint positives fell to 76.7% correct at 12 months. We conclude that appropriately trained and supervised CHWs can use RDTs safely and accurately in community practice for up to 12 months post-training.

Full-text

Available from: Busiku Hamainza, Apr 27, 2015
2 Followers
 · 
134 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Malaria is holo-endemic in Burkina Faso and causes approximately 40,000 deaths every year. In 2010, health authorities scaled up community case management of malaria with artemisinin-based combination therapy. Previous trials and pilot project evaluations have shown that this strategy may be feasible, acceptable, and effective under controlled implementation conditions. However, little is known about its effectiveness or feasibility/acceptability under real-world conditions of implementation at national scale. A panel study was conducted in two health districts of Burkina Faso, Kaya and Zorgho. Three rounds of surveys were conducted during the peak malaria-transmission season (in August 2011, 2012 and 2013) in a panel of 2,232 randomly selected households. All sickness episodes in children under five and associated health-seeking practices were documented. Community health worker (CHW) treatment coverage was evaluated and the determinants of consulting a CHW were analysed using multi-level logistic regression. In urban areas, less than 1% of sick children consulted a CHW, compared to 1%-9% in rural areas. Gaps remained between intentions and actual practices in treatment-seeking behaviour. In 2013, the most frequent reasons for not consulting the CHW were: the fact of not knowing him/her (78% in urban areas; 33% in rural areas); preferring the health centre (23% and 45%, respectively); and drug stock-outs (2% and 12%, respectively). The odds of visiting a CHW in rural areas significantly increased with the distance to the nearest health centre and if the household had been visited by a CHW during the previous three months. This study shows that CHWs are rarely used in Burkina Faso to treat malaria in children. Issues of implementation fidelity, a lack of adaptation to the local context and problems of acceptability/feasibility might have undermined the effectiveness of community case management of malaria. While some suggest extending this strategy in urban areas, total absence of CHW services uptake in these areas suggest that caution is required. Even in rural areas, treatment coverage by CHWs was considerably less than that reported by previous trials and pilot projects. This study confirms the necessity of evaluating public health interventions under real-world conditions of implementation.
    Malaria Journal 12/2015; 14(1). DOI:10.1186/s12936-015-0591-9 · 3.49 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Malaria rapid diagnostic tests (RDTs) are appropriate for case management, but persistent antigenaemia is a concern for HRP2-detecting RDTs in endemic areas. It has been suggested that pan-pLDH test bands on combination RDTs could be used to distinguish persistent antigenaemia from active Plasmodium falciparum infection, however this assumes all active infections produce positive results on both bands of RDTs, an assertion that has not been demonstrated. In this study, data generated during the WHO-FIND product testing programme for malaria RDTs was reviewed to investigate the reactivity of individual test bands against P. falciparum in 18 combination RDTs. Each product was tested against multiple wild-type P. falciparum only samples. Antigen levels were measured by quantitative ELISA for HRP2, pLDH and aldolase. When tested against P. falciparum samples at 200 parasites/μL, 92% of RDTs were positive; 57% of these on both the P. falciparum and pan bands, while 43% were positive on the P. falciparum band only. There was a relationship between antigen concentration and band positivity; ≥4 ng/mL of HRP2 produced positive results in more than 95% of P. falciparum bands, while ≥45 ng/mL of pLDH was required for at least 90% of pan bands to be positive. In active P. falciparum infections it is common for combination RDTs to return a positive HRP2 band combined with a negative pan-pLDH band, and when both bands are positive, often the pan band is faint. Thus active infections could be missed if the presence of a HRP2 band in the absence of a pan band is interpreted as being caused solely by persistent antigenaemia.
    Malaria Journal 12/2015; 14(1):629. DOI:10.1186/s12936-015-0629-z · 3.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To examine the impact of providing rapid diagnostic tests for malaria on fever management in private drug retail shops where most poor rural people with fever present, with the aim of reducing current massive overdiagnosis and overtreatment of malaria. Cluster randomized trial of 24 clusters of shops. Dangme West, a poor rural district of Ghana. Shops and their clients, both adults and children. Providing rapid diagnostic tests with realistic training. The primary outcome was the proportion of clients testing negative for malaria by a double-read research blood slide who received an artemisinin combination therapy or other antimalarial. Secondary outcomes were use of antibiotics and antipyretics, and safety. Of 4603 clients, 3424 (74.4%) tested negative by double-read research slides. The proportion of slide-negative clients who received any antimalarial was 590/1854 (32%) in the intervention arm and 1378/1570 (88%) in the control arm (adjusted risk ratio 0.41 (95% CI 0.29 to 0.58), P<0.0001). Treatment was in high agreement with rapid diagnostic test result. Of those who were slide-positive, 690/787 (87.8%) in the intervention arm and 347/392 (88.5%) in the control arm received an artemisinin combination therapy (adjusted risk ratio 0.96 (0.84 to 1.09)). There was no evidence of antibiotics being substituted for antimalarials. Overall, 1954/2641 (74%) clients in the intervention arm and 539/1962 (27%) in the control arm received appropriate treatment (adjusted risk ratio 2.39 (1.69 to 3.39), P<0.0001). No safety concerns were identified. Most patients with fever in Africa present to the private sector. In this trial, providing rapid diagnostic tests for malaria in the private drug retail sector significantly reduced dispensing of antimalarials to patients without malaria, did not reduce prescribing of antimalarials to true malaria cases, and appeared safe. Rapid diagnostic tests should be considered for the informal private drug retail sector.Registration Clinicaltrials.gov NCT01907672. © Ansah et al 2015.
    BMJ Clinical Research 03/2015; 350:h1019. DOI:10.1136/bmj.h1019 · 14.09 Impact Factor