Article

Intercalated disc abnormalities, reduced Na(+) current density, and conduction slowing in desmoglein-2 mutant mice prior to cardiomyopathic changes.

Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Padua 35121, Italy.
Cardiovascular Research (Impact Factor: 5.81). 07/2012; 95(4):409-18. DOI: 10.1093/cvr/cvs219
Source: PubMed

ABSTRACT Mutations in genes encoding desmosomal proteins have been implicated in the pathogenesis of arrhythmogenic right ventricular cardiomyopathy (ARVC). However, the consequences of these mutations in early disease stages are unknown. We investigated whether mutation-induced intercalated disc remodelling impacts on electrophysiological properties before the onset of cell death and replacement fibrosis.
Transgenic mice with cardiac overexpression of mutant Desmoglein2 (Dsg2) Dsg2-N271S (Tg-NS/L) were studied before and after the onset of cell death and replacement fibrosis. Mice with cardiac overexpression of wild-type Dsg2 and wild-type mice served as controls. Assessment by electron microscopy established that intercellular space widening at the desmosomes/adherens junctions occurred in Tg-NS/L mice before the onset of necrosis and fibrosis. At this stage, epicardial mapping in Langendorff-perfused hearts demonstrated prolonged ventricular activation time, reduced longitudinal and transversal conduction velocities, and increased arrhythmia inducibility. A reduced action potential (AP) upstroke velocity due to a lower Na(+) current density was also observed at this stage of the disease. Furthermore, co-immunoprecipitation demonstrated an in vivo interaction between Dsg2 and the Na(+) channel protein Na(V)1.5.
Intercellular space widening at the level of the intercalated disc (desmosomes/adherens junctions) and a concomitant reduction in AP upstroke velocity as a consequence of lower Na(+) current density lead to slowed conduction and increased arrhythmia susceptibility at disease stages preceding the onset of necrosis and replacement fibrosis. The demonstration of an in vivo interaction between Dsg2 and Na(V)1.5 provides a molecular pathway for the observed electrical disturbances during the early ARVC stages.

0 Bookmarks
 · 
159 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cell adhesive junction is specialized intercellular structure composed of cell adhesion proteins. They are essential to connect adjacent heart muscle cell and make heart contraction effectively and properly. Clinical and genetic studies have revealed close relationship between cell adhesive proteins and the occurrence of various cardiomyopathies. Here we will review recent development on the disease phenotype, potential cellular and molecular mechanism related to cell adhesion molecules, with particular disease pathogenesis learned from genetic manipulated murine models.
    World journal of cardiology. 05/2014; 6(5):304-313.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Arrhythmogenic cardiomyopathy (ACM) is characterized by frequent cardiac arrhythmias. To elucidate the underlying mechanisms and discover potential chemical modifiers, we created a zebrafish model of ACM with cardiac myocyte-specific expression of the human 2057del2 mutation in the gene encoding plakoglobin. A high-throughput screen identified SB216763 as a suppressor of the disease phenotype. Early SB216763 therapy prevented heart failure and reduced mortality in the fish model. Zebrafish ventricular myocytes that expressed 2057del2 plakoglobin exhibited 70 to 80% reductions in INa and IK1 current densities, which were normalized by SB216763. Neonatal rat ventricular myocytes that expressed 2057del2 plakoglobin recapitulated pathobiological features seen in patients with ACM, all of which were reversed or prevented by SB216763. The reverse remodeling observed with SB216763 involved marked subcellular redistribution of plakoglobin, connexin 43, and Nav1.5, but without changes in their total cellular content, implicating a defect in protein trafficking to intercalated discs. In further support of this mechanism, we observed SB216763-reversible, abnormal subcellular distribution of SAP97 (a protein known to mediate forward trafficking of Nav1.5 and Kir2.1) in rat cardiac myocytes expressing 2057del2 plakoglobin and in cardiac myocytes derived from induced pluripotent stem cells from two ACM probands with plakophilin-2 mutations. These observations pinpoint aberrant trafficking of intercalated disc proteins as a central mechanism in ACM myocyte injury and electrical abnormalities.
    Science translational medicine 06/2014; 6(240):240ra74. · 10.76 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Arrhythmogenic ventricular cardiomyopathy (AVC) is generally referred to as arrhythmogenic right ventricular (RV) cardiomyopathy/dysplasia and constitutes an inherited cardiomyopathy. Affected patients may succumb to sudden cardiac death (SCD), ventricular tachyarrhythmias (VTA) and heart failure. Genetic studies have identified causative mutations in genes encoding proteins of the intercalated disk that lead to reduced myocardial electro-mechanical stability. The term arrhythmogenic RV cardiomyopathy is somewhat misleading as biventricular involvement or isolated left ventricular (LV) involvement may be present and thus a broader term such as AVC should be preferred. The diagnosis is established on a point score basis according to the revised 2010 task force criteria utilizing imaging modalities, demonstrating fibrous replacement through biopsy, electrocardiographic abnormalities, ventricular arrhythmias and a positive family history including identification of genetic mutations. Although several risk factors for SCD such as previous cardiac arrest, syncope, documented VTA, severe RV/LV dysfunction and young age at manifestation have been identified, risk stratification still needs improvement, especially in asymptomatic family members. Particularly, the role of genetic testing and environmental factors has to be further elucidated. Therapeutic interventions include restriction from physical exercise, beta-blockers, sotalol, amiodarone, implantable cardioverter-defibrillators and catheter ablation. Life-long follow-up is warranted in symptomatic patients, but also asymptomatic carriers of pathogenic mutations.
    World Journal of Cardiology (WJC) 04/2014; 6(4):154-174. · 2.06 Impact Factor