Article

cRGD-functionalized mPEG-PLGA-PLL nanoparticles for imaging and therapy of breast cancer.

Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.25, Lane 2200, Xietu Road, Shanghai 200032, PR China.
Biomaterials (Impact Factor: 8.31). 07/2012; 33(28):6739-47. DOI: 10.1016/j.biomaterials.2012.06.008
Source: PubMed

ABSTRACT Cyclic peptide (arginine-glycine-aspartic-glutamic-valine acid, cRGD)-modified monomethoxy (polyethylene glycol)-poly (D,L-lactide-co-glycolide)-poly (L-lysine) nanoparticles (mPEG-PLGA-PLL-cRGD NPs) with antitumor drug Mitoxantrone (DHAQ) or fluorescence agent Rhodamine B (Rb) encapsulated in their interior were prepared. The remarkable features of the mPEG-PLGA-PLL-cRGD NPs are the effective improvement for the cytotoxicity and uptake of the cell in vitro, and the significant enhancement of delivery ability for DHAQ or Rb in vivo. As a consequence, an excellent therapeutic efficiency for cancer is obtained, demonstrating the mPEG-PLGA-PLL-cRGD NPs play a key role in enhancing cancer therapeutic efficiency.

0 Bookmarks
 · 
89 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Biomaterial poly(lactic-co-glycolic acid) (PLGA), a FDA-approved material for clinical application, showed broad prospects in the past, but gradually can no longer meet present clinical developments and requirements, which we synthesized monomethoxy(polyethylene glycol)-poly(d,l-lactic-co-glycolic acid)-poly(l-lysine) (mPEG-PLGA-PLL) (PEAL) and have had some relevant reports. But studies on biocompatibility and the impacts of LA and GA ratio (LA/GA = 60/40, 70/30, and 80/20) in main material have not yet been reported. Hemolysis experiment indicates that the hemolysis rate of PEAL extraction medium is less than 5%. Whole blood clotting time (CT), plasma recalcification time, activated partial thromboplastin time, prothrombin time evaluations, and dynamic CT assay show that the anticoagulant time of PEAL copolymer for blood is longer than that under negative and positive control. Protein adsorption assay indicates that PEAL films adsorb less protein than PLGA films (p < 0.01); but comparing with expanded polytetrafluoroethylene, the aforementioned difference is not significant (p > 0.05). Complement activation test shows that PEAL surface does not induce complement activation. CCK8 measurement shows that the relative growth rates of Huh7, L02, and L929 cells co-incubated with PEAL nanoparticles (NPs) are more than 90%. PEAL NPs co-incubated with 5% foetal bovine serum or 2% bovine serum albumin, through dynamic light scattering assay, remain stable. Different concentrations of PEAL NPs co-incubated with zebrafish embryos at 6-72 h post fertilization show that comparing with negative control, 10, 100, or 500 μM of NPs for embryos development has no significant effects (p > 0.05), only 1000 or 2000 μM of NPs has some effects (p < 0.05). It is concluded that the PEAL copolymer, with excellent biocompatibility, proves to be a high-safety dose as drug carrier and implant candidate in vivo.
    Journal of Biomaterials Science Polymer Edition 05/2014; · 1.70 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract We reported the development of multifunctional liposomes as a dual-modality probe to facilitate targeted magnetic resonance and fluorescent imaging of bone metastasis from advanced cancer. Multifunctional liposomes consisted of liposomes as a carrier, hydrophobic CdSe QDs in phospholipid bilayer, hydrophilic iron oxide nanoparticles in interior vesicle, lipid-PEG derivative on the surface and cRGDyk peptide conjugated to distal ends of lipid-PEG derivative. Excellent stability, effective detection signal, low toxicity, high resistance to phagocytosis by macrophages and good specificity to tumor of multifunctional liposomes were confirmed by in vitro characterization. The in vivo results demonstrated that multifunctional liposomes accumulated mainly in tumor and liver, indicating that targeted dual-modality imaging was achieved, and the results from two kinds of modalities were consistent and complementary. These findings provide a helpful strategy for detection of bone metastases in a more effective manner for initiation of appropriate therapy.
    Journal of Liposome Research 06/2014; · 1.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: cRGD-directed, NIR-responsive and robust AuNR/PEG-PCL hybrid nanoparticles (cRGD-HNs) were designed and developed for targeted chemotherapy of human glioma xenografts in mice. As expected, cRGD-HNs had excellent colloidal stability. The in vitro release studies showed that drug release from DOX-loaded cRGD-HNs (cRGD-HN-DOX) was minimal under physiological conditions but markedly accelerated upon NIR irradiation at a low power density of 0.2W/cm(2), due to photothermally induced phase transition of PCL regime. MTT assays showed that the antitumor activity of cRGD-HN-DOX in αvβ3 integrin over-expressed human glioblastoma U87MG cells was greatly boosted by mild NIR irradiation, which was significantly more potent than non-targeting HN-DOX counterpart under otherwise the same conditions and was comparable or superior to free DOX, supporting receptor-mediated endocytosis mechanism. The in vivo pharmacokinetics studies showed that cRGD-HN-DOX had much longer circulation time than free DOX. The in vivo imaging and biodistribution studies revealed that cRGD-HN-DOX could actively target to human U87MG glioma xenograft in nude mice. The therapeutic studies in human U87MG glioma xenografts exhibited that cRGD-HN-DOX in combination with NIR irradiation completely inhibited tumor growth and possessed much lower side effects than free DOX. The Kaplan-Meier survival curves showed that all mice treated with cRGD-HN-DOX plus NIR irradiation survived over an experimental period of 48days while control groups treated with PBS, cRGD-HN-DOX, cRGD-HNs with NIR irradiation, free DOX, or HN-DOX with NIR irradiation (non-targeting control) had short life spans of 15-40 days. Ligand-directed AuNR/PEG-PCL hybrid nanoparticles with evident tumor-targetability as well as superior spatiotemporal and rate control over drug release have emerged as an appealing platform for cancer chemotherapy in vivo.
    Journal of controlled release : official journal of the Controlled Release Society. 08/2014;