Article

Peroxiredoxin 3 Is a Redox-Dependent Target of Thiostrepton in Malignant Mesothelioma Cells

Virginia Commonwealth University, United States of America
PLoS ONE (Impact Factor: 3.53). 06/2012; 7(6):e39404. DOI: 10.1371/journal.pone.0039404
Source: PubMed

ABSTRACT Thiostrepton (TS) is a thiazole antibiotic that inhibits expression of FOXM1, an oncogenic transcription factor required for cell cycle progression and resistance to oncogene-induced oxidative stress. The mechanism of action of TS is unclear and strategies that enhance TS activity will improve its therapeutic potential. Analysis of human tumor specimens showed FOXM1 is broadly expressed in malignant mesothelioma (MM), an intractable tumor associated with asbestos exposure. The mechanism of action of TS was investigated in a cell culture model of human MM. As for other tumor cell types, TS inhibited expression of FOXM1 in MM cells in a dose-dependent manner. Suppression of FOXM1 expression and coincidental activation of ERK1/2 by TS were abrogated by pre-incubation of cells with the antioxidant N-acetyl-L-cysteine (NAC), indicating its mechanism of action in MM cells is redox-dependent. Examination of the mitochondrial thioredoxin reductase 2 (TR2)-thioredoxin 2 (TRX2)-peroxiredoxin 3 (PRX3) antioxidant network revealed that TS modifies the electrophoretic mobility of PRX3. Incubation of recombinant human PRX3 with TS in vitro also resulted in PRX3 with altered electrophoretic mobility. The cellular and recombinant species of modified PRX3 were resistant to dithiothreitol and SDS and suppressed by NAC, indicating that TS covalently adducts cysteine residues in PRX3. Reduction of endogenous mitochondrial TRX2 levels by the cationic triphenylmethane gentian violet (GV) promoted modification of PRX3 by TS and significantly enhanced its cytotoxic activity. Our results indicate TS covalently adducts PRX3, thereby disabling a major mitochondrial antioxidant network that counters chronic mitochondrial oxidative stress. Redox-active compounds like GV that modify the TR2/TRX2 network may significantly enhance the efficacy of TS, thereby providing a combinatorial approach for exploiting redox-dependent perturbations in mitochondrial function as a therapeutic approach in mesothelioma.

0 Followers
 · 
147 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Peroxiredoxin 3 (PRX3), a typical 2-Cys peroxiredoxin located exclusively in the mitochondrial matrix, is the principal peroxidase responsible for metabolizing mitochondrial hydrogen peroxide, a byproduct of cellular respiration originating from the mitochondrial electron transport chain. Mitochondrial oxidants are produced in excess in cancer cells due to oncogenic transformation and metabolic reorganization, and signals through FOXM1 and other redox-responsive factors to support a hyper-proliferative state. Over-expression of PRX3 in cancer cells has been shown to counteract oncogene-induced senescence and support tumor cell growth and survival making PRX3 a credible therapeutic target. Using malignant mesothelioma (MM) cells stably expressing shRNAs to PRX3 we show that decreased expression of PRX3 alters mitochondrial structure, function and cell cycle kinetics. As compared to control cells, knockdown of PRX3 expression increased mitochondrial membrane potential, basal ATP production, oxygen consumption and extracellular acidification rates. shPRX3 MM cells failed to progress through the cell cycle compared to wild type controls, with increased numbers of cells in G2/M phase. Diminished PRX3 expression also induced mitochondrial hyperfusion similar to the DRP1 inhibitor mdivi-1. Cell cycle progression and changes in mitochondrial networking were rescued by transient expression of either catalase or mitochondrial-targeted catalase, indicating high levels of hydrogen peroxide contribute to perturbations in mitochondrial structure and function in shPRX3 MM cells. Our results indicate that PRX3 levels establish a redox set point that permits MM cells to thrive in response to increased levels of mROS, and that perturbing the redox status governed by PRX3 impairs proliferation by altering cell cycle-dependent dynamics between mitochondrial networking and energy metabolism. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
    11/2014; 3C:79-87. DOI:10.1016/j.redox.2014.11.003
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Members of the Peroxiredoxin (Prx) family are major cellular antioxidants that scavenge hydrogen peroxide and play essential roles in oxidative stress and cell signaling. 2-Cys Prxs, including Prx1, 2, 3 and 4, have been indicated in multiple oncogenic signaling pathways and thus may contribute to various processes of cancer development. The significance of 2-Cys Prxs in lung cancer development and their biological function in signal transduction have not been fully investigated. In this study we analyzed the expression of 2-Cys Prxs in lung cancer, and examined their levels of expression in a variety of cell lines established from human lung normal or cancer tissues. We found that 2-Cys Prxs, in particular, Prx1 and Prx4, were preferentially expressed in cell lines derived from human lung cancer. Through isoform specific knockdown of individual Prx, we demonstrated that Prx1 and Prx4 (but not Prx3) were required for human lung cancer A549 cells to form soft agar colony and to invade through matrigel in culture. Knockdown of Prx1 or Prx4 significantly reduced the activation of c-Jun and repressed the AP-1 mediated promoter activity. In mouse xenograft models, knockdown of Prx4 in A549 cells reduced subcutaneous tumor growth and blocked metastasis formation initiated through tail vein injection. Moreover, overexpression of Prx1 or Prx4 further enhanced the malignancy of A549 cells both in culture and in mouse xenografts in vivo. These data provide an in-depth understanding of the contribution of Prx1 and Prx4 to lung cancer development and are of importance for future development of therapeutic methods that targeting 2-Cys Prxs.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Thiostrepton is a natural antibiotic produced by bacteria of Streptomyces genus. We identified Thiostrepton as a strong hit in a cell-based small molecule screen for DIAP1 stability modulators. It was shown previously that Thiostrepton induces upregulation of several gene products in Streptomyces lividans, including the TipAS and TipAL isoforms, and that it can induce apoptotic cell death in human cancer cells. Furthermore, it was suggested that thiostrepton induces oxidative and proteotoxic stress, as inferred from the transcriptional upregulation of stress-related genes and endoplasmic reticulum (ER) stress genes. We used a combination of biochemical and proteomics approaches to investigate the effect of Thiostrepton and other compounds in human cells. Our mass-spectrometry data and subsequent biochemical validation shows that Thiostrepton (and MG-132 proteasome inhibitor) trigger upregulation of heat shock proteins HspA1A, Hsp70, Hsp90α, or Hsp105 in various human cancer cells. We propose a model where Thiostrepton-induced proteasome inhibition leads to accumulation of protein aggregates that trigger a heat shock response and apoptosis in human cancer cells.
    Advances in Experimental Medicine and Biology 01/2014; 806:443-451. DOI:10.1007/978-3-319-06068-2_21 · 2.01 Impact Factor

Full-text (3 Sources)

Download
64 Downloads
Available from
May 27, 2014