Peripheral blood CD4 T-cell and plasmacytoid dendritic cell (pDC) reactivity to herpes simplex virus 2 and pDC number do not correlate with the clinical or virologic severity of recurrent genital herpes.

Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA.
Journal of Virology (Impact Factor: 4.65). 07/2012; 86(18):9952-63. DOI: 10.1128/JVI.00829-12
Source: PubMed

ABSTRACT Leukocytes participate in the immune control of herpes simplex virus (HSV). Data from HIV coinfections, germ line mutations, and case reports suggest involvement of CD4 T cells and plasmacytoid dendritic cells (pDC). We investigated the relationships between these cells and recurrent genital herpes disease severity in the general population. Circulating CD4 T-cell responses to HSV-2 were measured in specimens from 67 immunocompetent individuals with measured genital lesion and HSV shedding rates. Similarly, pDC number and functional responses to HSV-2 were analyzed in 40 persons. CD4 responses and pDC concentrations and responses ranged as much as 100-fold between persons while displaying moderate within-person consistency over time. No correlations were observed between these immune response parameters and genital HSV-2 severity. Cytomegalovirus (CMV) coinfection was not correlated with differences in HSV-2-specific CD4 T-cell responses. The CD4 T-cell response to HSV-2 was much more polyfunctional than was the response to CMV. These data suggest that other immune cell subsets with alternate phenotypes or anatomical locations may be responsible for genital herpes control in chronically infected individuals.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human alphaherpesviruses (αHHV)-herpes simplex virus type 1 (HSV-1), HSV-2, and varicella-zoster virus (VZV)-infect mucosal epithelial cells, establish a lifelong latent infection of sensory neurons, and reactivate intermittingly to cause recrudescent disease. Although chronic αHHV infections co-exist with brisk T-cell responses, T-cell immune suppression is associated with worsened recurrent infection. Induction of αHHV-specific T-cell immunity is complex and results in poly-specific CD4 and CD8 T-cell responses in peripheral blood. Specific T-cells are localized to ganglia during the chronic phase of HSV infection and to several infected areas during recurrences, and persist long after viral clearance. These recent advances hold promise in the design of new vaccine candidates.
    Current opinion in virology. 05/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Herpes simplex virus type 2 (HSV-2) infects 530million people, is the leading cause of genital ulcer disease, and increases the risk of HIV-1 acquisition. Although several candidate vaccines have been promising in animal models, prophylactic and therapeutic vaccines have not been effective in clinical trials thus far. Negative results from the most recent prophylactic glycoprotein D2 subunit vaccine trial suggest that we must reevaluate our approach to HSV-2 vaccine development. We discuss HSV-2 pathogenesis, immunity, and vaccine efforts to date, as well as the current pipeline of candidate vaccines and design of trials to evaluate new vaccine constructs.
    Vaccine 09/2013; · 3.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Herpes simplex viruses types 1 and 2 (HSV-1 and HSV-2) infect a large proportion of the world's population. Infection is life-long and can cause periodic mucocutaneous symptoms, but it only rarely causes life-threatening disease among immunocompetent children and adults. However, when HSV infection occurs during the neonatal period, viral replication is poorly controlled and a large proportion of infants die or develop disability even with optimal antiviral therapy. Increasingly, specific differences are being elucidated between the immune system of newborns and those of older children and adults, which predispose to severe infections and reflect the transition from fetal to postnatal life. Studies in healthy individuals of different ages, individuals with primary or acquired immunodeficiencies, and animal models have contributed to our understanding of the mechanisms that control HSV infection and how these may be impaired during the neonatal period. This paper outlines our current understanding of innate and adaptive immunity to HSV infection, immunologic differences in early infancy that may account for the manifestations of neonatal HSV infection, and the potential of interventions to augment neonatal immune protection against HSV disease.
    Clinical and Developmental Immunology 01/2013; 2013:369172. · 2.93 Impact Factor

Full-text (2 Sources)

Available from
Jun 6, 2014