Structural insights into triple-helical collagen cleavage by matrix metalloproteinase 1

Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, London W6 8LH, United Kingdom.
Proceedings of the National Academy of Sciences (Impact Factor: 9.67). 07/2012; 109(31):12461-6. DOI: 10.1073/pnas.1204991109
Source: PubMed


Collagenases of the matrix metalloproteinase (MMP) family play major roles in morphogenesis, tissue repair, and human diseases, but how they recognize and cleave the collagen triple helix is not fully understood. Here, we report temperature-dependent binding of a catalytically inactive MMP-1 mutant (E200A) to collagen through the cooperative action of its catalytic and hemopexin domains. Contact between the two molecules was mapped by screening the Collagen Toolkit peptide library and by hydrogen/deuterium exchange. The crystal structure of MMP-1(E200A) bound to a triple-helical collagen peptide revealed extensive interactions of the 115-Å-long triple helix with both MMP-1 domains. An exosite in the hemopexin domain, which binds the leucine 10 residues C-terminal to the scissile bond, is critical for collagenolysis and represents a unique target for inhibitor development. The scissile bond is not correctly positioned for hydrolysis in the crystallized complex. A productive binding mode is readily modeled, without altering the MMP-1 structure or the exosite interactions, by axial rotation of the collagen homotrimer. Interdomain flexing of the enzyme and a localized excursion of the collagen chain closest to the active site, facilitated by thermal loosening of the substrate, may lead to the first transition state of collagenolysis.

Download full-text


Available from: Jan J Enghild,
  • Source
    • "While it is intuitive that dental pulp destruction may be a function of MMPs, our previous study reported that MMP-3 actually accelerates wound healing following dental pulp injury [20]. This observation indicates that MMP-3 may be involved in both ECM degradation and the subsequent morphogenesis, wound repair [20] [21] and angiogenesis that occur in inflamed tissues [22] [23] [24]. Because of the challenges associated with obtaining sufficient amounts of purified human odontoblast cells, no study has investigated odontoblast cells following the induction of inflammation using a pro-inflammatory cytokine mixture in vitro. "
    [Show abstract] [Hide abstract]
    ABSTRACT: A pro-inflammatory cytokine mixture (CM: interleukin (IL)-1β, tumor necrosis factor-α and interferon-γ) and IL-1β-induced matrix metalloproteinase (MMP)-3 activity have been shown to increase the proliferation of rat dental pulp cells and murine stem cell-derived odontoblast-like cells. This suggests that MMP-3 may regulate wound healing and regeneration in the odontoblast-rich dental pulp. Here, we determined whether these results can be extrapolated to human dental pulp by investigating the effects of CM-induced MMP-3 up-regulation on the proliferation and apoptosis of purified odontoblast-like cells derived from human skeletal muscle stem cells. We used siRNA to specifically reduce MMP-3 expression. We found that CM treatment increased MMP-3 mRNA and protein levels as well as MMP-3 activity. Cell proliferation was also markedly increased, with no changes in apoptosis, upon treatment with CM and following the application of exogenous MMP-3. Endogenous tissue inhibitors of metalloproteinases were constitutively expressed during all experiments and unaffected by MMP-3. Although treatment with MMP-3 siRNA suppressed cell proliferation, it also unexpectedly increased apoptosis. This siRNA-mediated increase in apoptosis could be reversed by exogenous MMP-3. These results demonstrate that cytokine-induced MMP-3 activity regulates cell proliferation and suppresses apoptosis in human odontoblast-like cells.
    Experimental Cell Research 09/2014; DOI:10.1016/j.yexcr.2014.09.015 · 3.25 Impact Factor
  • Source
    • "Although MMP-3 and MMP-1 exhibit similar domain architectures (Nagase et al., 2006), MMP-3 (a stromelysin) is unable to cleave fibrillar collagens. Mutagenesis and domain swap chimera studies on MMP-1 and MMP-3 (Chung et al., 2000, 2004; Manka et al., 2012; Minond et al., 2006; Murphy et al., 1992) have contributed to better understand MMPs collagenolysis mechanism. It was demonstrated that the active site cleft of MMP-1 is critical for the collagenolytic activity (Chung et al., 2000). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Bacterial collagenases are metalloproteinases involved in the degradation of the extracellular matrices of animal cells, due to their ability to digest native collagen. These enzymes are important virulence factors in a variety of pathogenic bacteria. Nonetheless, there is a lack of scientific consensus for a proper and well-defined classification of these enzymes and a vast controversy regarding the correct identification of collagenases. Clostridial collagenases were the first ones to be identified and characterized and are the reference enzymes for comparison of newly discovered collagenolytic enzymes. In this review we present the most recent data regarding bacterial collagenases and overview the functional and structural diversity of bacterial collagenases. An overall picture of the molecular diversity and distribution of these proteins in nature will also be given. Particular aspects of the different proteolytic activities will be contextualized within relevant areas of application, mainly biotechnological processes and therapeutic uses. At last, we will present a new classification guide for bacterial collagenases that will allow the correct and straightforward classification of these enzymes.
    Critical Reviews in Microbiology 04/2014; DOI:10.3109/1040841X.2014.904270 · 6.02 Impact Factor
  • Source
    • "An important factor for cell viability may therefore be linked to the availability and/or activity of certain proteins of the ECM, whose activity is mediated by cadherins, integrin-matrix ligand among others. The ability of the collagenase in dissociating EVT cells by only cleaving the peptide bonds in the triple helical collagen molecules [29,30], and therefore preserving surface cell molecules and receptors may be a differential crucial factor in our protocol. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Extravillous trophoblast (EVT) cells are of pivotal importance in human embryo implantation and homeostasis of the maternal fetal interface. Invasion of the endometrium by EVT contributes to placental anchorage, spiral artery remodeling, immunological defense, tolerogenic responses, and several collaborative cross talks involved in establishing and maintaining a successful pregnancy. We report here an improved protocol for the isolation of fully differentiated EVT cells from the basal plate of the human term placenta. The basal plate was carefully dissected from the villous tissue and the amniochorion membrane prior to enzymatic digestion. Term basal EVT cells were isolated using a 30 and 60% Percoll gradient. A panel of markers and characteristics of the isolated cells were used to confirm the specificity and efficiency of the method so that their potential as an investigative tool for placental research could be ascertained. Isolated cells were immunoreactive for cytokeratin-7 (CK-7), placental growth factor, placental alkaline phosphatase, human leukocyte antigen G1 (HLA-G1), and alpha1 and alpha5 integrins, similarly to the EVT markers from first trimester placental villi. Around 95% of the isolated cells labeled positively for CK-7 and 82% for HLA-G1. No significant change in viability was observed during 48h of EVT culture as indicated by propidium iodide incorporation and trypan blue test exclusion. Genes for metalloproteinases MMP-2 and MMP9 (positive regulators of trophoblast invasiveness) were expressed up to 48h of culturing, as also the gelatinolytic activity of the isolated cells. Transforming growth factor (TGF)-beta, which inhibits proliferation, migration, and invasiveness of first-trimester EVT cells, also reduced invasion of isolated term EVT cells in transwell assays, whereas epidermal growth factor was a positive modulator. Term basal plate may be a viable source of functional EVT cells that is an alternative to villous explant-derived EVT cells and cell lines. Isolated term EVT cells may be particularly useful in investigation of the role of trophoblast cells in pathological gestations, in which the precise regulation and interactive ability of extravillous trophoblast has been impaired.
    Reproductive Biology and Endocrinology 01/2014; 12(1):7. DOI:10.1186/1477-7827-12-7 · 2.23 Impact Factor
Show more